Advertisement

Ancestral Genome Reconstruction

  • Jijun TangEmail author
Chapter
Part of the Computational Biology book series (COBO, volume 29)

Abstract

Reconstruction of extinct ancestral genomes is an important topic in comparative genomics and has a wide range of applications. By comparing a current-day species against its ancestor, we can deduce how it differs from the ancestor and infer detailed information about the evolution of species. With more and more fully sequenced genomes becoming available, we are able to reconstruct ancestors at the whole genome level by using evolutionary events such as genome rearrangements, gene insertions, deletions and duplications. In this chapter, we will present the concepts related to whole genome evolution and ancestral reconstruction. We will review evolutionary models and algorithms in pairwise comparison of genomes, computing of the median problem and optimizations in inferring phylogenies and ancestors from multiple genomes.

Keywords

Ancestral reconstruction Phylogenetics Genome rearrangement Median problem Double-cut-and-joining 

Notes

Acknowledgements

JT was supported by the National Science Foundation of US (grant number IIS 1161586).

References

  1. 1.
    Avdeyev, P., Jiang, S., Aganezov, S., Hu, F., Alekseyev, M.A.: Reconstruction of ancestral genomes in presence of gene gain and loss. J. Comput. Biol. 23(3), 150–164 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bader, D., Moret, B., Yan, M.: A fast linear-time algorithm for inversion distance with an experimental comparison. J. Comput. Biol. 8(5), 483–491 (2001)CrossRefGoogle Scholar
  3. 3.
    Bader, M.: Genome rearrangements with duplications. BMC Bioinform. 11(Supple 1), S27 (2010)Google Scholar
  4. 4.
    Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Proceedings of the 6th Workshop on Algorithms in Bioinformatics (WABI’06). Lecture Notes in Computer Science, vol. 4175, pp. 163–173. Springer Verlag, Berlin (2006)Google Scholar
  5. 5.
    Biller, P., Feijao, P., Meidanis, J.: Rearrangement-based phylogeny using the single-cut-or-join operation. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 10(1), 122–134 (2013)CrossRefGoogle Scholar
  6. 6.
    Blanchette, M., Bourque, G., Sankoff, D.: Breakpoint phylogenies. Genome Inform. 8, 25–34 (1997)Google Scholar
  7. 7.
    Braga, M., Stoye, J.: Counting all DCJ sorting scenarios. In: Proceedings of RECOMB International Workshop on Comparative Genomics (RECOMB-CG’09), pp. 36–47. Springer Verlag, Berlin (2009)CrossRefGoogle Scholar
  8. 8.
    Caprara, A.: On the practical solution of the reversal median problem. In: Proceedings of the 1st International Workshop Algorithms in Bioinformatics (WABI’01). Lecture Notes in Computer Science, vol. 2149, pp. 238–251 (2001)Google Scholar
  9. 9.
    Compeau, P.: A simplified view of DCJ-Indel distance. In: Proceedings of the 12th Workshop Algorithms in Bioinformatics (WABI’12). Lecture Notes in Computer Science, vol. 7534, pp. 365–377. Springer Verlag, Berlin (2012)Google Scholar
  10. 10.
    Cosner, M., Jansen, R., Moret, B., Raubeson, L., Wang, L.S., Warnow, T., Wyman, S.: A new fast heuristic for computing the breakpoint phylogeny and a phylogenetic analysis of a group of highly rearranged chloroplast genomes. In: Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology (ISMB’00), pp. 104–115 (2000)Google Scholar
  11. 11.
    Feijão, P., Meidanis, J.: SCJ: a variant of breakpoint distance for which sorting, genome median and genome halving problems are easy. In: International Workshop on Algorithms in Bioinformatics, pp. 85–96. Springer (2009)Google Scholar
  12. 12.
    Feng, B., Lin, Y., Zhou, L., Guo, Y., Friedman, R., Xia, R., Hu, F., Liu, C., Tang, J.: Reconstructing yeasts phylogenies and ancestors from whole genome data. Sci. Rep. 7(1), 15,209 (2017)Google Scholar
  13. 13.
    Fertin, G., Labarre, A., Rusu, I., Vialette, S., Tannier, E.: Combinatorics of Genome Rearrangements. MIT press (2009)Google Scholar
  14. 14.
    Fitch, W.M.: Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Biol. 20(4), 406–416 (1971)CrossRefGoogle Scholar
  15. 15.
    Gagnon, Y., Blanchette, M., El-Mabrouk, N.: A flexible ancestral genome reconstruction method based on gapped adjacencies. BMC Bioinform. 13(Suppl 19), S4 (2012)Google Scholar
  16. 16.
    Hannenhalli, S., Pevzner, P.: Transforming mice into men (polynomial algorithm for genomic distance problems). In: Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science (FOCS’95), pp. 581–592 (1995)Google Scholar
  17. 17.
    Hu, F., Lin, Y., Tang, J.: MLGO: phylogeny reconstruction and ancestral inference from gene-order data. BMC Bioinform. 15(1), 1 (2014)CrossRefGoogle Scholar
  18. 18.
    Hu, F., Zhou, J., Zhou, L., Tang, J.: Probabilistic reconstruction of ancestral gene orders with insertions and deletions. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(4), 667–672 (2014)CrossRefGoogle Scholar
  19. 19.
    Hu, F., Zhou, L., Tang, J.: Reconstructing ancestral genomic orders using binary encoding and probabilistic models. In: Bioinformatics Research and Applications, pp. 17–27. Springer (2013)Google Scholar
  20. 20.
    Huson, D., Vawter, L., Warnow, T.: Solving large scale phylogenetic problems using DCM-2. In: Proceedings of the 7th International Conference on Intelligent Systems for Molecular Biology (ISMB’99) (1999)Google Scholar
  21. 21.
    Jones, B.R., Rajaraman, A., Tannier, E., Chauve, C.: ANGES: reconstructing ANcestral GEnomeS maps. Bioinformatics 28(18), 2388–2390 (2012)CrossRefGoogle Scholar
  22. 22.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lin, Y., Hu, F., Tang, J., Moret, B.: Maximum likelihood phylogenetic reconstruction from high-resolution whole-genome data and a tree of 68 eukaryotes. In: Pacific Symposium on Biocomputing, pp. 357–366. World Scientific (2013)Google Scholar
  24. 24.
    Lin, Y., Moret, B.: Estimating true evolutionary distances under the DCJ model. In: Proceedings of the 16th International Conference on Intelligent Systems for Molecular Biology (ISMB’08) (2008)CrossRefGoogle Scholar
  25. 25.
    Lin, Y., Rajan, V., Swenson, K., Moret, B.: Estimating true evolutionary distances under rearrangements, duplications, and losses. In: Proceedings of the 8th Asia Pacific Bioinformatics Conference (APBC’10). BMC Bioinform. 11(Suppl 1), S54 (2010)Google Scholar
  26. 26.
    Ma, J.: A probabilistic framework for inferring ancestral genomic orders. In: 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 179–184. IEEE (2010)Google Scholar
  27. 27.
    Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C., Kent, W.J., Blanchette, M., Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral genome. Genome Res. 16(12), 1557–1565 (2006)CrossRefGoogle Scholar
  28. 28.
    Marron, M., Swenson, K., Moret, B.: Genomic distances under deletions and insertions. In: Proceedings of the 9th International Conference Computing and Combinatorics (COCOON’03). Lecture Notes in Computer Science, vol. 2697, pp. 537–547. Springer Verlag, Berlin (2003)Google Scholar
  29. 29.
    Metropolis, N., Rosenbluth, A., Rosenbluth, M.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)CrossRefGoogle Scholar
  30. 30.
    Moret, B., Lin, Y., Tang, J.: Rearrangements in phylogenetic inference: compare, model, or encode? In: Models and Algorithms for Genome Evolution, pp. 147–171. Springer (2013)Google Scholar
  31. 31.
    Moret, B., Siepel, A., Tang, J., Liu, T.: Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene-order data. In: Proceedings of the 2nd Workshop on Algorithms in Bioinformatics (WABI’02). Lecture Notes in Computer Science, vol. 2452, pp. 521–536. Springer Verlag, Berlin (2002)zbMATHGoogle Scholar
  32. 32.
    Moret, B., Tang, J., Wang, L.S., Warnow, T.: Steps toward accurate reconstructions of phylogenies from gene-order data. J. Comput. Syst. Sci. 65(3), 508–525 (2002)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Moret, B., Warnow, T.: Reconstructing optimal phylogenetic trees: a challenge in experimental algorithmics. In: Fleischer, R., Moret, B., Schmidt, E. (eds.) Experimental Algorithmics. Lecture Notes in Computer Science, vol. 2547, pp. 163–180. Springer Verlag, Berlin (2002)CrossRefGoogle Scholar
  34. 34.
    Moret, B., Wyman, S., Bader, D., Warnow, T., Yan, M.: A new implementation and detailed study of breakpoint analysis. In: Proceedings of the 6th Pacific Symposium on Biocomputing (PSB’01), pp. 583–594. World Scientific Pub. (2001)Google Scholar
  35. 35.
    Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. Elec. Colloq. Comput. Complex. 71 (1998)Google Scholar
  36. 36.
    Perrin, A., Varré, J.S., Blanquart, S., Ouangraoua, A.: Procars: progressive reconstruction of ancestral gene orders. BMC Genomics 16(Suppl 5), S6 (2015)CrossRefGoogle Scholar
  37. 37.
    Rajan, V., Xu, W., Lin, Y., Swenson, K., Moret, B.: Heuristics for the inversion median problem. In: Proceedings of the 8th Asia Pacific Bioinformatics Conference (APBC’10). BMC Bioinform. 11(Suppl 1), S30 (2010)Google Scholar
  38. 38.
    Shao, M., Lin, Y.: Approximating the edit distance for genomes with duplicate genes under DCJ, insertion and deletion. BMC Bioinform. 13(Suppl 19), S13 (2012)CrossRefGoogle Scholar
  39. 39.
    Shao, M., Lin, Y., Moret, B.: An exact algorithm to compute the double-cut-and-join distance for genomes with duplicate genes. J. Comput. Biol. 22(5), 425–435 (2015)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Siepel, A., Moret, B.: Finding an optimal inversion median: experimental results. In: Proceedings of the 1st International Workshop Algorithms Bioinformatics (WABI’01). Lecture Notes in Computer Science, vol. 2149, pp. 189–203. Springer Verlag, Berlin (2001)Google Scholar
  41. 41.
    Silva, P., Braga, M., Machado, R., Dantas, S.: DCJ-indel distance with distinct operation costs. In: Proceedings of the 12th Workshop on Algorithms in Bioinformatics (WABI’12). Lecture Notes in Computer Science, vol. 7534, pp. 378–390. Springer Verlag, Berlin (2012)Google Scholar
  42. 42.
    Swenson, K., Arndt, W., Tang, J., Moret, B.: Phylogenetic reconstruction from complete gene orders of whole genomes. In: Proceedings of the 6th Asia Pacific Bioinformatics Conference (APBC’08), pp. 241–250 (2008)Google Scholar
  43. 43.
    Tang, J., Moret, B.: Scaling up accurate phylogenetic reconstruction from gene-order data. In: Proceedings of the 11th International Conference on Intelligent Systems for Molecular Biology (ISMB’03). Bioinformatics, vol. 19, pp. i305–i312. Oxford U. Press (2003)Google Scholar
  44. 44.
    Tang, J., Moret, B., Cui, L., dePamphilis, C.: Phylogenetic reconstruction from arbitrary gene-order data. In: Proceedings of the 4th IEEE Symposium on Bioinformatics and Bioengineering BIBE’04, pp. 592–599. IEEE Press, Piscataway, NJ (2004)Google Scholar
  45. 45.
    Xia, R., Lin, Y., Zhou, J., Feng, B., Tang, J.: A median solver and phylogenetic inference based on double-cut-and-join sorting. J. Comput. Biol. 25(3), 302–312 (2018)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Xu, A., Moret, B.: GASTS: parsimony scoring under rearrangements. In: Proceedings of the 11th Workshop on Algorithms in Bioinformatics (WABI’11). Lecture Notes in Computer Science, vol. 6833, pp. 351–363. Springer Verlag, Berlin (2011)Google Scholar
  47. 47.
    Xu, W.: DCJ median problems on linear multichromosomal genomes: graph representation and fast exact solutions. In: RECOMB International Workshop on Comparative Genomics, pp. 70–83. Springer (2009)Google Scholar
  48. 48.
    Xu, W., Sankoff, D.: Decompositions of multiple breakpoint graphs and rapid exact solutions to the median problem. In: Proceedings of the 8th International Workshop Algorithms in Bioinformatics (WABI’08). Lecture Notes in Computer Science, vol. 5251, pp. 25–37 (2008)Google Scholar
  49. 49.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations