Advertisement

Mechanical Behaviour of PMMA Bio-polymer Loaded by Nano-scale Additives

  • Hadi Asgharzadeh Shirazi
  • Majid R. AyatollahiEmail author
  • Mahdi Navidbakhsh
  • Alireza Asnafi
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 104)

Abstract

The Polymethylmethacrylate (PMMA)-based bone cement is a well-known polymer in medicine and especially orthopedic prosthesis system manufacturing. Bone cements have been widely used in orthopedic diseases and traumas to fill the space between bones and prostheses. Conventional bone cements have some drawbacks such as the lack of sufficient biocompatibility and poor mechanical properties. This is important because the bone cement is the weakest part of a prosthesis system and is more prone to mechanical failure than the other areas of system. This phenomenon subsequently leads to prosthesis failure, which sometimes inevitably necessitates subsequent surgical procedures. This chapter intends to acquaint readers with comprehensive information about the bone cement, especially in terms of mechanical properties and reliable constitutive model of the cement, to better understand the PMMA bone cement and its derivatives as an important biomaterial used in medicine.

Keywords

PMMA bone cement Nano-composite Nano-hydroxyapatite Nano-biomaterials Mechanical properties Constitutive model 

References

  1. Arun, S., Rama Sreekanth, P.S., Kanagaraj, S.: Mechanical characterisation of PMMA/SWNTs bone cement using nanoindenter. Mater. Technol. 29(supp. 1), B4–B9 (2014)CrossRefGoogle Scholar
  2. Ayatollahi, M.R., Yahya, M.Y., Shirazi, H.A., Hassan, S.A.: Mechanical and tribological properties of hydroxyapatite nanoparticles extracted from natural bovine bone and the bone cement developed by nano-sized bovine hydroxyapatite filler. Ceram. Int. 41(9), 10818–10827 (2015)CrossRefGoogle Scholar
  3. Ayatollahi, M.R., Mirmohammadi, S.A., Shirazi, H.A.: The tension-shear fracture behavior of polymeric bone cement modified with hydroxyapatite nano-particles. Arch. Civ. Mech. Eng. 18(1), 50–59 (2018)CrossRefGoogle Scholar
  4. Bakan, F., Lacin, O., Sarac, H.: A novel low temperature sol–gel synthesis process for thermally stable nano crystalline hydroxyapatite. Powder Technol. 1(233), 295–302 (2013)CrossRefGoogle Scholar
  5. Ben, H.S., Dimitrijević, M.M., Kojović, A., Stojanović, D.B., Obradović-Đuričić, K., Jančić-Heinemann, R.M., Aleksić, R.: The effect of alumina nanofillers size and shape on mechanical behavior of PMMA matrix composite. J. Serb. Chem. Soc. 79(10), 1295–1307 (2014)CrossRefGoogle Scholar
  6. Cengiz, B., Gokce, Y., Yildiz, N., Aktas, Z., Calimli, A.: Synthesis and characterization of hydroxyapatite nanoparticles. Colloids Surf. A 322(1–3), 29–33 (2008)CrossRefGoogle Scholar
  7. Charnley J: Acrylic cement in orthopaedic surgery. In: Acrylic Cement in Orthopaedic Surgery (1970)Google Scholar
  8. Dalby, M.J., Di Silvio, L., Harper, E.J., Bonfield, W.: Initial interaction of osteoblasts with the surface of a hydroxyapatite-poly (methylmethacrylate) cement. Biomaterials 22(13), 1739–1747 (2001)CrossRefGoogle Scholar
  9. Dalby, M.J., Di Silvio, L., Harper, E.J., Bonfield, W.: Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response. Biomaterials 23(2), 569–576 (2002)CrossRefGoogle Scholar
  10. Fathi, M.H., Hanifi, A.: Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol–gel method. Mater. Lett. 61(18), 3978–3983 (2007)CrossRefGoogle Scholar
  11. Hamad WN, Abdullah AM, Mohamad D. Effect of zinc oxide on flexural and physical properties of PMMA composites. In: AIP Conference Proceedings 19 Dec 2016, vol. 1791, no. 1, p. 020014. AIP Publishing (2016)Google Scholar
  12. Hendriks, J.G., Van Horn, J.R., Van Der Mei, H.C., Busscher, H.J.: Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials 25(3), 545–556 (2004)CrossRefGoogle Scholar
  13. Jin, T., Niu, X., Xiao, G., Wang, Z., Zhou, Z., Yuan, G., Shu, X.: Effects of experimental variables on PMMA nano-indentation measurements. Polym. Testing 1(41), 1–6 (2015)CrossRefGoogle Scholar
  14. Karimzadeh, A., Ayatollahi, M.R.: Investigation of mechanical and tribological properties of bone cement by nano-indentation and nano-scratch experiments. Polym. Testing 31(6), 828–833 (2012)CrossRefGoogle Scholar
  15. Karimzadeh A, Ayatollahi MR, Bushroa AR, Herliansyah MK. Effect of sintering temperature on mechanical and tribological properties of hydroxyapatite measured by nanoindentation and nanoscratch experiments. Ceram. Int. 40(7), 9159–9164 (2014)CrossRefGoogle Scholar
  16. Kamalanathan, P., Ramesh, S., Bang, L.T., Niakan, A., Tan, C.Y., Purbolaksono, J., Chandran, H., Teng, W.D.: Synthesis and sintering of hydroxyapatite derived from eggshells as a calcium precursor. Ceram. Int. 40(10), 16349–16359 (2014)CrossRefGoogle Scholar
  17. Kang, J., Becker, A.A., Sun, W.: Determination of elastic and viscoplastic material properties obtained from indentation tests using a combined finite element analysis and optimization approach. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 229(3), 175–188 (2015)Google Scholar
  18. Katsuki, H., Furuta, S., Komarneni, S.: Microwave-versus conventional-hydrothermal synthesis of hydroxyapatite crystals from gypsum. J. Am. Ceram. Soc. 82(8), 2257–2259 (1999)CrossRefGoogle Scholar
  19. Kese, K., Li, Z.C.: Semi-ellipse method for accounting for the pile-up contact area during nanoindentation with the Berkovich indenter. Scripta Mater. 55(8), 699–702 (2006)CrossRefGoogle Scholar
  20. Khaled, S.M., Charpentier, P.A., Rizkalla, A.S.: Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers. J. Biomater. Appl. 25(6), 515–537 (2011)CrossRefGoogle Scholar
  21. Kotha, S.P., Li, C., McGinn, P., Schmid, S.R., Mason, J.J.: Improved mechanical properties of acrylic bone cement with short titanium fiber reinforcement. J. Mater. Sci. Mater. Med. 17(12), 1403–1409 (2006)CrossRefGoogle Scholar
  22. Lewis G, Ed Austin G. Mechanical properties of vacuum‐mixed acrylic bone cement. J. Appl. Biomater. 5(4), 307–314 (1994)CrossRefGoogle Scholar
  23. Monmaturapoj N.: Nano-size hydroxyapatite powders preparation by wet-chemical precipitation route. J. Met. Mater. Miner. 18(1) (2017)Google Scholar
  24. Morita, S., Furuya, K., Ishihara, K., Nakabayashi, N.: Performance of adhesive bone cement containing hydroxyapatite particles. Biomaterials. 19(17), 1601–1606 (1998)CrossRefGoogle Scholar
  25. Moursi, A.M., Winnard, A.V., Winnard, P.L., Lannutti, J.J., Seghi, R.R.: Enhanced osteoblast response to a polymethylmethacrylate–hydroxyapatite composite. Biomaterials. 23(1), 133–144 (2002)CrossRefGoogle Scholar
  26. Nottrott M.: Acrylic bone cements: influence of time and environment on physical properties. Thesis, Department of orthopedic surgery, Haukeland university Hospital, Bergen, Norway (2010)Google Scholar
  27. Opara, T.N., Dalby, M.J., Harper, E.J., Di Silvio, L., Bonfield, W.: The effect of varying percentage hydroxyapatite in poly(ethylmethacrylate) bone cement on human osteoblast-like cells. J. Mater. Sci. Mater. Med. 14(3), 277–282 (2003)CrossRefGoogle Scholar
  28. Paz, E., Forriol, F., Del Real, J.C., Dunne, N.: Graphene oxide versus graphene for optimisation of PMMA bone cement for orthopaedic applications. Mater. Sci. Eng. C 1(77), 1003–1011 (2017)CrossRefGoogle Scholar
  29. Ramesh, S., Tan, C.Y., Sopyan, I., Hamdi, M., Teng, W.D.: Consolidation of nanocrystalline hydroxyapatite powder. Sci. Technol. Adv. Mater. 8(1–2), 124–130 (2007)CrossRefGoogle Scholar
  30. Ramesh, S., Aw, K.L., Tolouei, R., Amiriyan, M., Tan, C.Y., Hamdi, M., Purbolaksono, J., Hassan, M.A., Teng, W.D.: Sintering properties of hydroxyapatite powders prepared using different methods. Ceram. Int. 39(1), 111–119 (2013)CrossRefGoogle Scholar
  31. Randorn, C., Kanta, A., Yaemsunthorn, K., Rujijanakul, G.: Fabrication of dense biocompatible hydroxyapatite ceramics with high hardness using a peroxide-based route: a potential process for scaling up. Ceram. Int. 41(4), 5594–5599 (2015)CrossRefGoogle Scholar
  32. Rodríguez M, Molina-Aldareguía JM, González C, LLorca J. Determination of the mechanical properties of amorphous materials through instrumented nanoindentation. Acta Mater. 60(9), 3953–3964 (2012)CrossRefGoogle Scholar
  33. Shirazi, H.A., Ayatollahi, M.R., Naimi-Jamal, M.R.: Influence of hydroxyapatite nano-particles on the mechanical and tribological properties of orthopedic cement-based nano-composites measured by nano-indentation and nano-scratch experiments. J. Mater. Eng. Perform. 24(9), 3300–3306 (2015)CrossRefGoogle Scholar
  34. Shirazi, H.A., Ayatollahi, M.R., Beigzadeh, B.: Preparation and characterisation of hydroxyapatite derived from natural bovine bone and PMMA/BHA composite for biomedical applications. Mater. Technol. 31(8), 448–453 (2016)CrossRefGoogle Scholar
  35. Shirazi, H.A., Mirmohammadi, S.A., Shaali, M., Asnafi, A., Ayatollahi, M.R.: A constitutive material model for a commercial PMMA bone cement using a combination of nano-indentation test and finite element analysis. Polym. Test. 1(59), 328–335 (2017)CrossRefGoogle Scholar
  36. Topoleski, L.D., Ducheyne, P., Cuckler, J.M.: The fracture toughness of titanium-fiber-reinforced bone cement. J. Biomed. Mater. Res. Part A 26(12), 1599–1617 (1992)CrossRefGoogle Scholar
  37. Wang, M.C., Chen, H.T., Shih, W.J., Chang, H.F., Hon, M.H., Hung, I.M.: Crystalline size, microstructure and biocompatibility of hydroxyapatite nanopowders by hydrolysis of calcium hydrogen phosphate dehydrate (DCPD). Ceram. Int. 41(2), 2999–3008 (2015)CrossRefGoogle Scholar
  38. Webb, J.C., Spencer, R.F.: The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. Bone Jt. J. 89(7), 851–857 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hadi Asgharzadeh Shirazi
    • 1
    • 2
  • Majid R. Ayatollahi
    • 1
    Email author
  • Mahdi Navidbakhsh
    • 2
  • Alireza Asnafi
    • 3
  1. 1.Fatigue and Fracture Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical EngineeringIran University of Science and TechnologyTehranIran
  2. 2.Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical EngineeringIran University of Science and TechnologyTehranIran
  3. 3.Hydro-Aeronautical Research CenterShiraz UniversityShirazIran

Personalised recommendations