Carbon Quantum Dots in Nanobiotechnology

  • Hamidreza Behboudi
  • Golnaz Mehdipour
  • Nooshin Safari
  • Mehrab Pourmadadi
  • Arezoo Saei
  • Meisam Omidi
  • Lobat Tayebi
  • Moones RahmandoustEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 104)


There has been an outburst of attraction in the use of nanoparticles and nanomaterials for bioimaging, biosensing and other chemical and biological applications. At the leading edge of the new trend of the emerging nanoparticles in the carbonic nanomaterials family, fluorescent carbon quantum dots have drawn considerable attention due to their unique and tunable properties. In this chapter, an overview of the fundamental properties of carbon quantum dots is provided first. Then, it focuses majorly on the in-vivo and in-vitro bioimaging, biosensing, drug delivery, wound-dressing and photocatalysis applications of the nanomaterial. This chapter is expected to offer beneficial insight into the role of carbon quantum dots in biological applications and encourage more exploration on the topic.


  1. Alam, A.-M., Park, B.-Y., Ghouri, Z.K., Park, M., Kim, H.-Y.: Synthesis of carbon quantum dots from cabbage with down-and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chem. 17(7), 3791–3797 (2015)CrossRefGoogle Scholar
  2. Amjadi, M., Manzoori, J.L., Hallaj, T.: Chemiluminescence of graphene quantum dots and its application to the determination of uric acid. J. Lumin. 153, 73–78 (2014)CrossRefGoogle Scholar
  3. Bagheri, Z., Ehtesabi, H., Rahmandoust, M., Ahadian, M.M., Hallaji, Z., Eskandari, F., Jokar, E.: New insight into the concept of carbonization degree in synthesis of carbon dots to achieve facile smartphone based sensing platform. Sci. Rep. 7(1), 11013 (2017)CrossRefGoogle Scholar
  4. Bailey, D.L., Townsend, D.W., Valk, P.E., Maisey, M.N.: Positron Emission Tomography. Springer (2005)Google Scholar
  5. Baker, S.N., Baker, G.A.: Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49(38), 6726–6744 (2010)CrossRefGoogle Scholar
  6. Bao, Y., De Keersmaecker, H., Corneillie, S., Yu, F., Mizuno, H., Zhang, G., Hofkens, J., Mendrek, B., Kowalczuk, A., Smet, M.: Tunable ratiometric fluorescence sensing of intracellular pH by aggregation-induced emission-active hyperbranched polymer nanoparticles. Chem. Mater. 27(9), 3450–3455 (2015)CrossRefGoogle Scholar
  7. Barker, A.L., Unwin, P.R., Gardner, J.W., Rieley, H.: A multi-electrode probe for parallel imaging in scanning electrochemical microscopy. Electrochem. Commun. 6(1), 91–97 (2004)CrossRefGoogle Scholar
  8. Bar-Shalom, R., Yefremov, N., Guralnik, L., Gaitini, D., Frenkel, A., Kuten, A., Altman, H., Keidar, Z., Israel, O.: Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J. Nucl. Med. 44(8), 1200–1209 (2003)Google Scholar
  9. Bhunia, S.K., Saha, A., Maity, A.R., Ray, S.C., Jana, N.R.: Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 3, 1473 (2013)CrossRefGoogle Scholar
  10. Bourlinos, A.B., Stassinopoulos, A., Anglos, D., Zboril, R., Georgakilas, V., Giannelis, E.P.: Photoluminescent carbogenic dots. Chem. Mater. 20(14), 4539–4541 (2008)CrossRefGoogle Scholar
  11. Briscoe, J., Marinovic, A., Sevilla, M., Dunn, S., Titirici, M.: Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells. Angew. Chem. Int. Ed. 54(15), 4463–4468 (2015)CrossRefGoogle Scholar
  12. Bui, T.T., Park, S.-Y.: A carbon dot–hemoglobin complex-based biosensor for cholesterol detection. Green Chem. 18(15), 4245–4253 (2016)CrossRefGoogle Scholar
  13. Calzolari, A., Oliviero, I., Deaglio, S., Mariani, G., Biffoni, M., Sposi, N.M., Malavasi, F., Peschle, C., Testa, U.: Transferrin receptor 2 is frequently expressed in human cancer cell lines. Blood Cells Mol. Dis. 39(1), 82–91 (2007)CrossRefGoogle Scholar
  14. Camacho, R., Tubasum, S., Southall, J., Cogdell, R.J., Sforazzini, G., Anderson, H.L., Pullerits, T., Scheblykin, I.G.: Fluorescence polarization measures energy funneling in single light-harvesting antennas—LH2 vs conjugated polymers. Sci. Rep. 5, 15080 (2015)CrossRefGoogle Scholar
  15. Cao, L., Wang, X., Meziani, M.J., Lu, F., Wang, H., Luo, P.G., Lin, Y., Harruff, B.A., Veca, L.M., Murray, D.: Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 129(37), 11318–11319 (2007)CrossRefGoogle Scholar
  16. Cayuela, A., Soriano, M.L., Valcárcel, M.: Reusable sensor based on functionalized carbon dots for the detection of silver nanoparticles in cosmetics via inner filter effect. Anal. Chim. Acta 872, 70–76 (2015)CrossRefGoogle Scholar
  17. Chandra, S., Patra, P., Pathan, S.H., Roy, S., Mitra, S., Layek, A., Bhar, R., Pramanik, P., Goswami, A.: Luminescent S-doped carbon dots: an emergent architecture for multimodal applications. J. Mater. Chem. B 1(18), 2375–2382 (2013)CrossRefGoogle Scholar
  18. Chen, Y.-C., Nien, C.-Y., Albert, K., Wen, C.-C., Hsieh, Y.-Z., Hsu, H.-Y.: Pseudo-multicolor carbon dots emission and the dilution-induced reversible fluorescence shift. RSC Adv. 6(50), 44024–44028 (2016)CrossRefGoogle Scholar
  19. da Silva, J.C.E., Gonçalves, H.M.: Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal. Chem. 30(8), 1327–1336 (2011)CrossRefGoogle Scholar
  20. Das, S.K., Liu, Y., Yeom, S., Kim, D.Y., Richards, C.I.: Single-particle fluorescence intensity fluctuations of carbon nanodots. Nano Lett. 14(2), 620–625 (2014)CrossRefGoogle Scholar
  21. Demchenko, A.P., Dekaliuk, M.O.: Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods Appl. Fluoresc. 1(4), 042001 (2013)CrossRefGoogle Scholar
  22. Deng, J., Lu, Q., Mi, N., Li, H., Liu, M., Xu, M., Tan, L., Xie, Q., Zhang, Y., Yao, S.: Electrochemical synthesis of carbon nanodots directly from alcohols. Chem. Eur. J. 20(17), 4993–4999 (2014)CrossRefGoogle Scholar
  23. Ding, C., Zhu, A., Tian, Y.: Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 47(1), 20–30 (2013a)CrossRefGoogle Scholar
  24. Ding, H., Cheng, L.-W., Ma, Y.-Y., Kong, J.-L., Xiong, H.-M.: Luminescent carbon quantum dots and their application in cell imaging. New J. Chem. 37(8), 2515–2520 (2013b)CrossRefGoogle Scholar
  25. Ding, H., Yu, S.-B., Wei, J.-S., Xiong, H.-M.: Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10(1), 484–491 (2015)CrossRefGoogle Scholar
  26. Dong, Y., Zhou, N., Lin, X., Lin, J., Chi, Y., Chen, G.: Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem. Mater. 22(21), 5895–5899 (2010)CrossRefGoogle Scholar
  27. Dong, Y., Shao, J., Chen, C., Li, H., Wang, R., Chi, Y., Lin, X., Chen, G.: Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50(12), 4738–4743 (2012)CrossRefGoogle Scholar
  28. Feng, T., Ai, X., An, G., Yang, P., Zhao, Y.: Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 10(4), 4410–4420 (2016)CrossRefGoogle Scholar
  29. Fröhlich, E.: The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 7, 5577 (2012)CrossRefGoogle Scholar
  30. Gao, A., Kang, Y.-F., Yin, X.-B.: Red fluorescence-magnetic resonance dual modality imaging applications of gadolinium containing carbon quantum dots with excitation independent emission. New J. Chem. 41(9), 3422–3431 (2017)CrossRefGoogle Scholar
  31. Ge, J., Jia, Q., Liu, W., Guo, L., Liu, Q., Lan, M., Zhang, H., Meng, X., Wang, P.: Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv. Mater. 27(28), 4169–4177 (2015)CrossRefGoogle Scholar
  32. Geohegan, D.B., Puretzky, A.A., Duscher, G., Pennycook, S.J.: Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation. Appl. Phys. Lett. 72(23), 2987–2989 (1998)CrossRefGoogle Scholar
  33. Gholinejad, M., Seyedhamzeh, M., Razeghi, M., Najera, C., Kompany-Zareh, M.: Iron oxide nanoparticles modified with carbon quantum nanodots for the stabilization of palladium nanoparticles: an efficient catalyst for the suzuki reaction in aqueous media under mild conditions. ChemCatChem 8(2), 441–447 (2016)CrossRefGoogle Scholar
  34. Giavalisco, M., Ferguson, H., Koekemoer, A., Dickinson, M., Alexander, D., Bauer, F., Bergeron, J., Biagetti, C., Brandt, W., Casertano, S.: The great observatories origins deep survey: initial results from optical and near-infrared imaging. Astrophys. J. Lett. 600(2), L93 (2004)CrossRefGoogle Scholar
  35. Gong, J., An, X., Yan, X.: A novel rapid and green synthesis of highly luminescent carbon dots with good biocompatibility for cell imaging. New J. Chem. 38(4), 1376–1379 (2014)CrossRefGoogle Scholar
  36. Hahn, M.A., Singh, A.K., Sharma, P., Brown, S.C., Moudgil, B.M.: Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal. Bioanal. Chem. 399(1), 3–27 (2011)CrossRefGoogle Scholar
  37. Hassan, M., Gomes, V.G., Dehghani, A., Ardekani, S.M.: Engineering carbon quantum dots for photomediated theranostics. Nano Res. 11(1), 1–41 (2018)CrossRefGoogle Scholar
  38. Havrdova, M., Hola, K., Skopalik, J., Tomankova, K., Petr, M., Cepe, K., Polakova, K., Tucek, J., Bourlinos, A.B., Zboril, R.: Toxicity of carbon dots–Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon 99, 238–248 (2016)CrossRefGoogle Scholar
  39. He, X., Li, H., Liu, Y., Huang, H., Kang, Z., Lee, S.-T.: Water soluble carbon nanoparticles: hydrothermal synthesis and excellent photoluminescence properties. Colloids Surf., B 87(2), 326–332 (2011)CrossRefGoogle Scholar
  40. Hilderbrand, S.A., Shao, F., Salthouse, C., Mahmood, U., Weissleder, R.: Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem. Commun. 28, 4188–4190 (2009)Google Scholar
  41. Hola, K., Bourlinos, A.B., Kozak, O., Berka, K., Siskova, K.M., Havrdova, M., Tucek, J., Safarova, K., Otyepka, M., Giannelis, E.P.: Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO– induced red-shift emission. Carbon 70, 279–286 (2014)CrossRefGoogle Scholar
  42. Hsu, P.-C., Chang, H.-T.: Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem. Commun. 48(33), 3984–3986 (2012)CrossRefGoogle Scholar
  43. Hsu, P.-C., Chen, P.-C., Ou, C.-M., Chang, H.-Y., Chang, H.-T.: Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. J. Mater. Chem. B 1(13), 1774–1781 (2013)CrossRefGoogle Scholar
  44. Hu, S.-L., Niu, K.-Y., Sun, J., Yang, J., Zhao, N.-Q., Du, X.-W.: One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 19(4), 484–488 (2009)CrossRefGoogle Scholar
  45. Hu, X., Cheng, L., Wang, N., Sun, L., Wang, W., Liu, W.: Surface passivated carbon nanodots prepared by microwave assisted pyrolysis: effect of carboxyl group in precursors on fluorescence properties. RSC Adv. 4(36), 18818–18826 (2014)CrossRefGoogle Scholar
  46. Hu, S., Trinchi, A., Atkin, P., Cole, I.: Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew. Chem. Int. Ed. 54(10), 2970–2974 (2015)CrossRefGoogle Scholar
  47. Hu, C., Liu, Y., Chen, J., He, Q., Gao, H.: A simple one-step synthesis of melanin-originated red shift emissive carbonaceous dots for bioimaging. J. Colloid Interface Sci. 480, 85–90 (2016)CrossRefGoogle Scholar
  48. Huang, X., Zhang, F., Zhu, L., Choi, K.Y., Guo, N., Guo, J., Tackett, K., Anilkumar, P., Liu, G., Quan, Q.: Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 7(7), 5684–5693 (2013)CrossRefGoogle Scholar
  49. Hutton, G.A., Reuillard, B., Martindale, B.C., Caputo, C.A., Lockwood, C.W., Butt, J.N., Reisner, E.: Carbon dots as versatile photosensitizers for solar-driven catalysis with redox enzymes. J. Am. Chem. Soc. 138(51), 16722–16730 (2016)CrossRefGoogle Scholar
  50. Jafari, S., Dizaj, S.M., Adibkia, K.: Cell-penetrating peptides and their analogues as novel nanocarriers for drug delivery. BioImpacts BI 5(2), 103 (2015)CrossRefGoogle Scholar
  51. Jaiswal, A., Ghosh, S.S., Chattopadhyay, A.: One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem. Commun. 48(3), 407–409 (2012)CrossRefGoogle Scholar
  52. Jaleel, J.A., Pramod, K.: Artful and multifaceted applications of carbon dot in biomedicine. J. Control. Release (2017)Google Scholar
  53. Jana, J., Ganguly, M., Das, B., Dhara, S., Negishi, Y., Pal, T.: One pot synthesis of intriguing fluorescent carbon dots for sensing and live cell imaging. Talanta 150, 253–264 (2016)CrossRefGoogle Scholar
  54. Jia, X., Li, J., Wang, E.: One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 4(18), 5572–5575 (2012)CrossRefGoogle Scholar
  55. Jiang, K., Sun, S., Zhang, L., Lu, Y., Wu, A., Cai, C., Lin, H.: Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Ed. 54(18), 5360–5363 (2015)CrossRefGoogle Scholar
  56. Kang, E.B., Choi, C.A., Mazrad, Z.A.I., Kim, S.H., In, I., Park, S.Y.: Determination of cancer cell-based ph-sensitive fluorescent carbon nanoparticles of cross-linked polydopamine by fluorescence sensing of alkaline phosphatase activity on coated surfaces and aqueous solution. Anal. Chem. 89(24), 13508–13517 (2017)CrossRefGoogle Scholar
  57. Keren, S., Zavaleta, C., Cheng, Z., de La Zerda, A., Gheysens, O., Gambhir, S.: Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl. Acad. Sci. 105(15), 5844–5849 (2008)CrossRefGoogle Scholar
  58. Kim, J., Park, J., Kim, H., Singha, K., Kim, W.J.: Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA. Biomaterials 34(29), 7168–7180 (2013)CrossRefGoogle Scholar
  59. Kobayashi, H., Ogawa, M., Alford, R., Choyke, P.L., Urano, Y.: New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110(5), 2620–2640 (2009)CrossRefGoogle Scholar
  60. Kong, B., Zhu, A., Ding, C., Zhao, X., Li, B., Tian, Y.: Carbon dot-based inorganic–organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv. Mater. 24(43), 5844–5848 (2012)CrossRefGoogle Scholar
  61. Lai, C.-W., Hsiao, Y.-H., Peng, Y.-K., Chou, P.-T.: Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO 2 for cell imaging and drug release. J. Mater. Chem. 22(29), 14403–14409 (2012)CrossRefGoogle Scholar
  62. Lewinski, N., Colvin, V., Drezek, R.: Cytotoxicity of nanoparticles. Small 4(1), 26–49 (2008)CrossRefGoogle Scholar
  63. Li, H., He, X., Kang, Z., Huang, H., Liu, Y., Liu, J., Lian, S., Tsang, C.H.A., Yang, X., Lee, S.T.: Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 49(26), 4430–4434 (2010a)CrossRefGoogle Scholar
  64. Li, X., Wang, H., Shimizu, Y., Pyatenko, A., Kawaguchi, K., Koshizaki, N.: Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem. Commun. 47(3), 932–934 (2010b)CrossRefGoogle Scholar
  65. Li, Q., Ohulchanskyy, T.Y., Liu, R., Koynov, K., Wu, D., Best, A., Kumar, R., Bonoiu, A., Prasad, P.N.: Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J. Phys. Chem. C 114(28), 12062–12068 (2010c)CrossRefGoogle Scholar
  66. Li, J.-Y., Liu, Y., Shu, Q.-W., Liang, J.-M., Zhang, F., Chen, X.-P., Deng, X.-Y., Swihart, M.T., Tan, K.-J.: One-Pot Hydrothermal Synthesis of Carbon Dots with Efficient Up-and Down-Converted Photoluminescence for the Sensitive Detection of Morin in a Dual-Readout Assay. Langmuir 33(4), 1043–1050 (2017)CrossRefGoogle Scholar
  67. Lim, S.Y., Shen, W., Gao, Z.: Carbon quantum dots and their applications. Chem. Soc. Rev. 44(1), 362–381 (2015)CrossRefGoogle Scholar
  68. Liu, Y., Xiao, N., Gong, N., Wang, H., Shi, X., Gu, W., Ye, L.: One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon 68, 258–264 (2014)CrossRefGoogle Scholar
  69. Liu, H., Li, Z., Sun, Y., Geng, X., Hu, Y., Meng, H., Ge, J., Qu, L.: Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability. Sci. Rep. 8(1), 1086 (2018)CrossRefGoogle Scholar
  70. Love, C., Din, A.S., Tomas, M.B., Kalapparambath, T.P., Palestro, C.J.: Radionuclide bone imaging: an illustrative review. Radiographics 23(2), 341–358 (2003)CrossRefGoogle Scholar
  71. Luo, P.G., Sahu, S., Yang, S.-T., Sonkar, S.K., Wang, J., Wang, H., LeCroy, G.E., Cao, L., Sun, Y.-P.: Carbon “quantum” dots for optical bioimaging. J. Mater. Chem. B 1(16), 2116–2127 (2013)CrossRefGoogle Scholar
  72. Luo, P.G., Yang, F., Yang, S.-T., Sonkar, S.K., Yang, L., Broglie, J.J., Liu, Y., Sun, Y.-P.: Carbon-based quantum dots for fluorescence imaging of cells and tissues. Rsc Adv. 4(21), 10791–10807 (2014)CrossRefGoogle Scholar
  73. Mazrad, Z.A.I., Lee, K., Chae, A., In, I., Lee, H., Park, S.Y.: Progress in internal/external stimuli responsive fluorescent carbon nanoparticles for theranostic and sensing applications. J. Mater. Chem. B 6(8), 1149–1178 (2018)CrossRefGoogle Scholar
  74. Namdari, P., Negahdari, B., Eatemadi, A.: Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed. Pharmacother. 87, 209–222 (2017)CrossRefGoogle Scholar
  75. Omidi, M., Yadegari, A., Tayebi, L.: Wound dressing application of pH-sensitive carbon dots/chitosan hydrogel. RSC Adv. 7(18), 10638–10649 (2017)CrossRefGoogle Scholar
  76. Peng, H., Travas-Sejdic, J.: Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 21(23), 5563–5565 (2009)CrossRefGoogle Scholar
  77. Peng, Z., Han, X., Li, S., Al-Youbi, A.O., Bashammakh, A.S., El-Shahawi, M.S., Leblanc, R.M.: Carbon dots: biomacromolecule interaction, bioimaging and nanomedicine. Coord. Chem. Rev. 343, 256–277 (2017)CrossRefGoogle Scholar
  78. Pierrat, P., Wang, R., Kereselidze, D., Lux, M., Didier, P., Kichler, A., Pons, F., Lebeau, L.: Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers. Biomaterials 51, 290–302 (2015)CrossRefGoogle Scholar
  79. Qiao, Z.-A., Wang, Y., Gao, Y., Li, H., Dai, T., Liu, Y., Huo, Q.: Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem. Commun. 46(46), 8812–8814 (2010)CrossRefGoogle Scholar
  80. Rahmandoust, M., Mohammadi, A.: On determination of the basic properties of graphene quantum dots, obtained by systematic adjustment of synthesis conditions. Thin Walled Struct., in-press (2018)Google Scholar
  81. Ray, S., Saha, A., Jana, N.R., Sarkar, R.: Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J. Phys. Chem. C 113(43), 18546–18551 (2009)CrossRefGoogle Scholar
  82. Reineck, P., Gibson, B.C.: Near‐infrared fluorescent nanomaterials for bioimaging and sensing. Adv. Opt. Mater. 5(2) (2017)Google Scholar
  83. Robertson, J., O’Reilly, E.: Electronic and atomic structure of amorphous carbon. Phys. Rev. B 35(6), 2946 (1987)CrossRefGoogle Scholar
  84. Ruan, S., Qian, J., Shen, S., Zhu, J., Jiang, X., He, Q., Gao, H.: A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging. Nanoscale 6(17), 10040–10047 (2014)CrossRefGoogle Scholar
  85. Salinas-Castillo, A., Ariza-Avidad, M., Pritz, C., Camprubí-Robles, M., Fernández, B., Ruedas-Rama, M.J., Megia-Fernández, A., Lapresta-Fernández, A., Santoyo-Gonzalez, F., Schrott-Fischer, A.: Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem. Commun. 49(11), 1103–1105 (2013)CrossRefGoogle Scholar
  86. Sarder, P., Maji, D., Achilefu, S.: Molecular probes for fluorescence lifetime imaging. Bioconjug. Chem. 26(6), 963–974 (2015)CrossRefGoogle Scholar
  87. Shangguan, J., Huang, J., He, D., He, X., Wang, K., Ye, R., Yang, X., Qing, T., Tang, J.: Highly Fe3 + -selective fluorescent nanoprobe based on ultrabright N/P codoped carbon dots and its application in biological samples. Anal. Chem. 89(14), 7477–7484 (2017)CrossRefGoogle Scholar
  88. Sharma, S., Umar, A., Sood, S., Mehta, S.K., Kansal, S.K.: Photoluminescent C-dots: An overview on the recent development in the synthesis, physiochemical properties and potential applications. J. Alloy. Compd. (2018)Google Scholar
  89. Shen, L.-M., Chen, Q., Sun, Z.-Y., Chen, X.-W., Wang, J.-H.: Assay of biothiols by regulating the growth of silver nanoparticles with C-dots as reducing agent. Anal. Chem. 86(10), 5002–5008 (2014)CrossRefGoogle Scholar
  90. Shi, W., Wang, Q., Long, Y., Cheng, Z., Chen, S., Zheng, H., Huang, Y.: Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun. 47(23), 6695–6697 (2011)CrossRefGoogle Scholar
  91. Shi, Y., Pan, Y., Zhong, J., Yang, J., Zheng, J., Cheng, J., Song, R., Yi, C.: Facile synthesis of gadolinium (III) chelates functionalized carbon quantum dots for fluorescence and magnetic resonance dual-modal bioimaging. Carbon 93, 742–750 (2015)CrossRefGoogle Scholar
  92. Shi, L., Yang, J.H., Zeng, H.B., Chen, Y.M., Yang, S.C., Wu, C., Zeng, H., Yoshihito, O., Zhang, Q.: Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores. Nanoscale 8(30), 14374–14378 (2016)CrossRefGoogle Scholar
  93. Smith, T.A., Ghiggino, K.P.: A review of the analysis of complex time-resolved fluorescence anisotropy data. Methods Appl. Fluoresc. 3(2), 022001 (2015)CrossRefGoogle Scholar
  94. Song, Y., Zhu, S., Yang, B.: Bioimaging based on fluorescent carbon dots. RSC Adv. 4(52), 27184–27200 (2014)CrossRefGoogle Scholar
  95. Stanisavljevic, M., Krizkova, S., Vaculovicova, M., Kizek, R., Adam, V.: Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens. Bioelectron. 74, 562–574 (2015)CrossRefGoogle Scholar
  96. Sun, Y.-P., Zhou, B., Lin, Y., Wang, W., Fernando, K.S., Pathak, P., Meziani, M.J., Harruff, B.A., Wang, X., Wang, H.: Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128(24), 7756–7757 (2006)CrossRefGoogle Scholar
  97. Tang, L., Ji, R., Cao, X., Lin, J., Jiang, H., Li, X., Teng, K.S., Luk, C.M., Zeng, S., Hao, J.: Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6(6), 5102–5110 (2012)CrossRefGoogle Scholar
  98. Tao, Z., Huang, Y.-A., Liu, X., Chen, J., Lei, W., Wang, X., Pan, L., Pan, J., Huang, Q., Zhang, Z.: High-performance photo-modulated thin-film transistor based on quantum dots/reduced graphene oxide fragment-decorated ZnO nanowires. Nano Micro Lett. 8(3), 247–253 (2016)CrossRefGoogle Scholar
  99. Tetsuka, H., Asahi, R., Nagoya, A., Okamoto, K., Tajima, I., Ohta, R., Okamoto, A.: Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 24(39), 5333–5338 (2012)CrossRefGoogle Scholar
  100. Toyokuni, S.: Iron-induced carcinogenesis: the role of redox regulation. Free Radic. Biol. Med. 20(4), 553–566 (1996)CrossRefGoogle Scholar
  101. Walker, C.L., Lukyanov, K.A., Yampolsky, I.V., Mishin, A.S., Bommarius, A.S., Duraj-Thatte, A.M., Azizi, B., Tolbert, L.M., Solntsev, K.M.: Fluorescence imaging using synthetic GFP chromophores. Curr. Opin. Chem. Biol. 27, 64–74 (2015)CrossRefGoogle Scholar
  102. Wang, H., Shen, J., Li, Y., Wei, Z., Cao, G., Gai, Z., Hong, K., Banerjee, P., Zhou, S.: Magnetic iron oxide–fluorescent carbon dots integrated nanoparticles for dual-modal imaging, near-infrared light-responsive drug carrier and photothermal therapy. Biomater. Sci. 2(6): 915–923 (2014a)CrossRefGoogle Scholar
  103. Wang, J., Gao, M., Ho, G.W.: Bidentate-complex-derived TiO2/carbon dot photocatalysts: in situ synthesis, versatile heterostructures, and enhanced H2 evolution. J. Mater. Chem. A 2(16), 5703–5709 (2014b)Google Scholar
  104. Wang, S., Chen, Z.-G., Cole, I., Li, Q.: Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence. Carbon 82, 304–313 (2015a)CrossRefGoogle Scholar
  105. Wang, H., Zhuang, J., Velado, D., Wei, Z., Matsui, H., Zhou, S.: Near-infrared-and visible-light-enhanced metal-free catalytic degradation of organic pollutants over carbon-dot-based carbocatalysts synthesized from biomass. ACS Appl. Mater. Interfaces 7(50), 27703–27712 (2015b)CrossRefGoogle Scholar
  106. Wang, Y., Hu, A.: Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C 2(34), 6921–6939 (2014)CrossRefGoogle Scholar
  107. Wang, L.V. Hu, S.: Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075), 1458–1462 (2012)CrossRefGoogle Scholar
  108. Wang, X., Cao, L., Lu, F., Meziani, M.J., Li, H., Qi, G., Zhou, B., Harruff, B.A., Kermarrec, F., Sun, Y.-P.: Photoinduced electron transfers with carbon dots. Chem. Commun. 25, 3774–3776 (2009)Google Scholar
  109. Wang, X., Cao, L., Yang, S.T., Lu, F., Meziani, M.J., Tian, L., Sun, K.W., Bloodgood, M.A., Sun, Y.P.: Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew. Chem. 122(31), 5438–5442 (2010)CrossRefGoogle Scholar
  110. Wei, L., Ma, Y., Shi, X., Wang, Y., Su, X., Yu, C., Xiang, S., Xiao, L., Chen, B.: Living cell intracellular temperature imaging with biocompatible dye-conjugated carbon dots. J. Mater. Chem. B 5(18), 3383–3390 (2017)CrossRefGoogle Scholar
  111. Wen, X., Yu, P., Toh, Y.-R., Ma, X., Tang, J.: On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chem. Commun. 50(36), 4703–4706 (2014)CrossRefGoogle Scholar
  112. Weng, G., Ling, A., Lv, X., Zhang, J., Zhang, B.: III-Nitride-based quantum dots and their optoelectronic applications. Nano Micro Lett. 3(3), 200–207 (2011)CrossRefGoogle Scholar
  113. Wolfbeis, O.S.: An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 44(14), 4743–4768 (2015)CrossRefGoogle Scholar
  114. Wu, X., Tian, F., Wang, W., Chen, J., Wu, M., Zhao, J.X.: Fabrication of highly fluorescent graphene quantum dots using l-glutamic acid for in vitro/in vivo imaging and sensing. J. Mater. Chem. C 1(31), 4676–4684 (2013)CrossRefGoogle Scholar
  115. Xu, X., Ray, R., Gu, Y., Ploehn, H.J., Gearheart, L., Raker, K., Scrivens, W.A.: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126(40), 12736–12737 (2004)CrossRefGoogle Scholar
  116. Yacobi, N.R., Fazllolahi, F., Kim, Y.H., Sipos, A., Borok, Z., Kim, K.-J., Crandall, E.D.: Nanomaterial interactions with and trafficking across the lung alveolar epithelial barrier: implications for health effects of air-pollution particles. Air Qual. Atmos. Health 4(1), 65–78 (2011)CrossRefGoogle Scholar
  117. Yan, X., Cui, X., Li, L.-S.: Synthesis of large, stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc. 132(17), 5944–5945 (2010)CrossRefGoogle Scholar
  118. Yang, S.-T., Cao, L., Luo, P.G., Lu, F., Wang, X., Wang, H., Meziani, M.J., Liu, Y., Qi, G., Sun, Y.-P.: Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131(32), 11308–11309 (2009a)CrossRefGoogle Scholar
  119. Yang, S.-T., Wang, X., Wang, H., Lu, F., Luo, P.G., Cao, L., Meziani, M.J., Liu, J.-H., Liu, Y., Chen, M.: Carbon dots as nontoxic and high-performance fluorescence imaging agents. J. Phys. Chem. C 113(42), 18110–18114 (2009b)CrossRefGoogle Scholar
  120. Yang, Z., Li, Z., Xu, M., Ma, Y., Zhang, J., Su, Y., Gao, F., Wei, H., Zhang, L.: Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano Micro Lett. 5(4), 247–259 (2013)CrossRefGoogle Scholar
  121. Yao, J., Yang, M., Duan, Y.: Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 114(12), 6130–6178 (2014)CrossRefGoogle Scholar
  122. Yu, B.Y., Kwak, S.-Y.: Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts. J. Mater. Chem. 22(17), 8345–8353 (2012)CrossRefGoogle Scholar
  123. Zhai, X., Zhang, P., Liu, C., Bai, T., Li, W., Dai, L., Liu, W.: Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem. Commun. 48(64), 7955–7957 (2012)CrossRefGoogle Scholar
  124. Zhang, J., Abbasi, F., Claverie, J.: An Efficient Templating Approach for the Synthesis of Redispersible Size‐Controllable Carbon Quantum Dots from Graphitic Polymeric Micelles. Chem. Eur. J. 21(43), 15142–15147 (2015)CrossRefGoogle Scholar
  125. Zhang, J., Yu, S.-H.: Carbon dots: large-scale synthesis, sensing and bioimaging. Mater. Today 19(7), 382–393 (2016)CrossRefGoogle Scholar
  126. Zhang, Y., Bai, Y., Yan, B.: Functionalized carbon nanotubes for potential medicinal applications. Drug Discov. Today 15(11–12), 428–435 (2010)CrossRefGoogle Scholar
  127. Zhang, Y.-Q., Ma, D.-K., Zhuang, Y., Zhang, X., Chen, W., Hong, L.-L., Yan, Q.-X., Yu, K., Huang, S.-M.: One-pot synthesis of N-doped carbon dots with tunable luminescence properties. J. Mater. Chem. 22(33), 16714–16718 (2012)CrossRefGoogle Scholar
  128. Zhao, Q.-L., Zhang, Z.-L., Huang, B.-H., Peng, J., Zhang, M., Pang, D.-W.: Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 41, 5116–5118 (2008)Google Scholar
  129. Zhao, F., Zhao, Y., Liu, Y., Chang, X., Chen, C., Zhao, Y.: Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7(10), 1322–1337 (2011)CrossRefGoogle Scholar
  130. Zhao, A., Chen, Z., Zhao, C., Gao, N., Ren, J., Qu, X.: Recent advances in bioapplications of C-dots. Carbon 85, 309–327 (2015)CrossRefGoogle Scholar
  131. Zheng, M., Ruan, S., Liu, S., Sun, T., Qu, D., Zhao, H., Xie, Z., Gao, H., Jing, X., Sun, Z.: Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS nano 9(11), 11455–11461 (2015a)CrossRefGoogle Scholar
  132. Zheng, X.T., Ananthanarayanan, A., Luo, K.Q., Chen, P.: Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14), 1620–1636 (2015b)CrossRefGoogle Scholar
  133. Zheng, H., Wang, Q., Long, Y., Zhang, H., Huang, X., Zhu, R.: Enhancing the luminescence of carbon dots with a reduction pathway. Chem. Commun. 47(38), 10650–10652 (2011)CrossRefGoogle Scholar
  134. Zhou, J., Booker, C., Li, R., Zhou, X., Sham, T.-K., Sun, X., Ding, Z.: An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 129(4), 744–745 (2007)CrossRefGoogle Scholar
  135. Zhou, N., Zhu, S., Maharjan, S., Hao, Z., Song, Y., Zhao, X., Jiang, Y., Yang, B., Lu, L.: Elucidating the endocytosis, intracellular trafficking, and exocytosis of carbon dots in neural cells. RSC Adv. 4(107), 62086–62095 (2014)CrossRefGoogle Scholar
  136. Zhou, J., Deng, W., Wang, Y., Cao, X., Chen, J., Wang, Q., Xu, W., Du, P., Yu, Q., Chen, J.: Cationic carbon quantum dots derived from alginate for gene delivery: one-step synthesis and cellular uptake. Acta Biomater. 42, 209–219 (2016)CrossRefGoogle Scholar
  137. Zhu, H., Wang, X., Li, Y., Wang, Z., Yang, F., Yang, X.: Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 34, 5118–5120 (2009)Google Scholar
  138. Zhu, B., Sun, S., Wang, Y., Deng, S., Qian, G., Wang, M., Hu, A.: Preparation of carbon nanodots from single chain polymeric nanoparticles and theoretical investigation of the photoluminescence mechanism. J. Mater. Chem. C 1(3), 580–586 (2013a)CrossRefGoogle Scholar
  139. Zhu, S., Meng, Q., Wang, L., Zhang, J., Song, Y., Jin, H., Zhang, K., Sun, H., Wang, H., Yang, B.: Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. 125(14), 4045–4049 (2013b)CrossRefGoogle Scholar
  140. Zhu, S., Song, Y., Zhao, X., Shao, J., Zhang, J., Yang, B.: The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 8(2), 355–381 (2015)CrossRefGoogle Scholar
  141. Zong, J., Zhu, Y., Yang, X., Shen, J., Li, C.: Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chem. Commun. 47(2), 764–766 (2011)CrossRefGoogle Scholar
  142. Zuo, P., Lu, X., Sun, Z., Guo, Y., He, H.: A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim. Acta 183(2), 519–542 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hamidreza Behboudi
    • 1
  • Golnaz Mehdipour
    • 1
  • Nooshin Safari
    • 1
  • Mehrab Pourmadadi
    • 1
  • Arezoo Saei
    • 1
  • Meisam Omidi
    • 1
  • Lobat Tayebi
    • 2
  • Moones Rahmandoust
    • 1
    Email author
  1. 1.Protein Research Center, Shahid Beheshti UniversityTehranIran
  2. 2.School of DentistryMarquette UniversityMilwaukeeUSA

Personalised recommendations