Advertisement

Polymeric Nanoparticulates as Efficient Anticancer Drugs Delivery Systems

  • Shima Asfia
  • Mahsa Mohammadian
  • Hasan KouchakzadehEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 104)

Abstract

Over recent decades, improving human health is undergoing an eruption of consideration led by the use of nanoparticles (NPs) as platforms for delivering drugs to cells. These NPs can be engineered to accumulate specifically at diseased cells, which allows direct delivering of drugs to target tissue.

References

  1. Agrawal, S., Dwivedi, M., Ahmad, H., Chadchan, S.B., Arya, A., Sikandar, R., et al.: CD44 targeting hyaluronic acid coated lapatinib nanocrystals foster the efficacy against triple-negative breast cancer. Nanomed. Nanotechnol. Biol. Med. 14(2), 327–337 (2017)CrossRefGoogle Scholar
  2. Ajazuddin, S.S.: Applications of novel drug delivery system for herbal formulations. Fitoterapia 81(7), 680–689 (2010)CrossRefGoogle Scholar
  3. Allen, T.M., Cullis, P.R.: Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65(1), 36–48 (2013)CrossRefGoogle Scholar
  4. Amreddy, N., Babu, A., Muralidharan, R., Munshi, A., Ramesh, R.: Polymeric nanoparticle-mediated gene delivery for lung cancer treatment. Top. Curr. Chem. 375(2), 35 (2017)CrossRefGoogle Scholar
  5. Azuma, A., Osaki, T., Minami, S., Okamoto, Y.: Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J. Funct. Biomater. 6, 33–49 (2015)CrossRefGoogle Scholar
  6. Babaei, Z., Jahanshahi, M., Sanati, M.H.: Fabrication and evaluation of gelatin NPs for delivering of anti-cancer drug. Int. J. Nanosci. Nanotechnol. 4(1), 23–29 (2008)Google Scholar
  7. Barrajón-Catalán, E., Menéndez-Gutiérrez, M.P., Falco, A., Carrato, A., Saceda, M., Micol, V.: Selective death of human breast cancer cells by lytic immunoliposomes: correlation with their HER2 expression level. Cancer Lett. 290(2), 192–203 (2010)CrossRefGoogle Scholar
  8. Bayrac, A.T., Akc, O.E., Eyidogan, F.I., OKTEM, H.A.: Target-specific delivery of doxorubicin to human glioblastoma cell line via ssDNA aptamer. J. Biosci. 43(1), 97–104 (2018)CrossRefGoogle Scholar
  9. Bertrand, N., Wu, J., Xu, X., Kamaly, N., Farokhzad, O.C.: Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014)CrossRefGoogle Scholar
  10. Bhatia, S.: NPs types, classification, characterization, fabrication methods and drug delivery applications. Nat. Polym. Drug Deliv. Syst., 33–93 (2016)Google Scholar
  11. Biondi, M., Ungaro, F., Quaglia, F., Netti, P.: Controlled drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 60(2), 229–242 (2008)CrossRefGoogle Scholar
  12. Blanco, M.D., Gomez, C., Olmo, R, Muniz E., Teijon, J.M. (2000). Chitosan microspheres in PLG films as devices for cytarabine release. Int. J. Pharm. 202, 29–39CrossRefGoogle Scholar
  13. Bonifácio, B.V., Silva, P.B., Ramos, M.A., Negri, K.M., Bauab, T.M., Chorilli, M.: Nanotechnology-based drug delivery systems and herbal medicines: a review. Int. J. Nanomed. 9, 1–15 (2014)CrossRefGoogle Scholar
  14. Booser, D.J., Esteva, F.J., Rivera, E., Valero, V., Esparza-Guerra, L., Priebe, W., et al.: Phase II study of liposomal annamycin in the treatment of doxorubicin-resistant breast cancer. Cancer Chemother. Pharmacol. 50, 6–8 (2002)CrossRefGoogle Scholar
  15. Bressler, N.M., V.I.P.T.S. Group: Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization—verteporfin in photodynamic therapy report 2. Am. J. Ophthalmol. 131, 541–560 (2001)CrossRefGoogle Scholar
  16. Carter, T., Mulholland, P., Chester, K.: Antibody-targeted NPs for cancer treatment. Immunotherapy 8(8), 941–958 (2016)CrossRefGoogle Scholar
  17. Caspersen, M.B., Kuhlmann, M., Nicholls, K., Saxton, M.J., Andersen, B., Howard, K.A.: Albumin-based drug delivery using cysteine 34 chemical conjugates—important considerations and requirements. Ther. Deliv. 8(7), 511–519 (2017)CrossRefGoogle Scholar
  18. Chang-Lin, J., Attar, M., Acheampong, A., et al.: Pharmacokinetics and pharmacodynamics of a sustained release dexamethasone intravitreal implant. Invest. Ophthalmol. Vis. Sci. 52(1), 80–86 (2011)CrossRefGoogle Scholar
  19. Chaudhari, K., Kumar, A., Khandelwal, V., et al.: Bone metastasis targeting: a novel approach to reach bone using zoledronate anchored PLGA nanoparticle as carrier system loaded with docetaxel. J. Controlled Release 158, 470–478 (2012)CrossRefGoogle Scholar
  20. Coester, C., Nayyar, P., Samuel, J.: In vitro uptake of gelatin NPs by murine dendritic cells and their intracellular localization. Eur. J. Pharm. Biopharm. 62(3), 306–314 (2006)CrossRefGoogle Scholar
  21. Danhier, F., Breton, A.L., Préat, V.: RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Am. Chem. Soc. 9(11), 2961–2973 (2012)Google Scholar
  22. Dickers, K.J., Huatan, H., Cameron, R.E.: Polyglycolide-based blends for drug delivery: a differential scanning calorimetry study of the melting behavior. J. Appl. Polym. Sci. 89, 2937–2939 (2003)CrossRefGoogle Scholar
  23. Dreis, S., Rothweiler, F., Michaelis, M., Kreuter, J., Langer, K.: Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loadedhuman serum albumin (HSA) NPs. Int. J. Pharm. 341, 207–214 (2007)CrossRefGoogle Scholar
  24. Dubey, R.D., Alama, N., Sanejaa, A., Kharea, V., Kumarb, A., Vaidhb, S., et al.: Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. Int. J. Pharm. 437, 20–28 (2012)CrossRefGoogle Scholar
  25. Dubey, R.D., Alam, N., Saneja, A., Kharea, V., Kumarb, A., Vaidhbet, S., et al.: Development and evaluation of folate functionalized albumin NPs for targeted delivery of gemcitabine. Int. J. Pharm. 492, 80–91 (2015)CrossRefGoogle Scholar
  26. Elbayoumi, T.A., Torchilin, V.P.: Tumor-specific antibody-mediated targeted delivery of Doxil reduces the manifestation of auricular erythema side effect in mice. Int. J. Pharm. 357(1–2), 272–279 (2008)CrossRefGoogle Scholar
  27. Elgadir, M.A., Uddin, M.S., Ferdous, S., Adam, A., Khan Chowdhury, A.J., Sarker, M.D.Z.I.: Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J. Food Drug Anal. 23(216), 619–629 (2014)Google Scholar
  28. Elzoghby, A.O., Samy, W.M., Elgindy, N.A.: Albumin-based NPs as potential controlled release drug delivery systems. J. Controlled Release 157(2), 168–182 (2012)CrossRefGoogle Scholar
  29. Ezpeleta, I., Irache, J.M., Stainmesse, S.: Gliadin NPs for the controlled release of all-trans-retinoic acid. Int. J. Pharm. 131(2), 191–200 (1996)CrossRefGoogle Scholar
  30. Fadaeian, G., Shojaosadati, S.A., Kouchakzadeh, H., Shokri, F., Soleimani, M.: Targeted delivery of 5-fluorouracil with monoclonal antibody modified bovine serum albumin NPs. Iran. J. Pharm. Res. 14(2), 395–405 (2015)Google Scholar
  31. Fahmy, U.A., Ahmed, O.A.A., Hosny, K.M.: Development and evaluation of avanafil self nanoemulsifying drug delivery system with rapid onset of action and enhanced bioavailability. AAPS PharmSciTech. 16(1), 53–58 (2015)CrossRefGoogle Scholar
  32. Farajzadeh, R., Pilehvar-Soltanahmadi, Y., Dadashpour, M., Javidfar, S., Lotfi-Attari, F., Sadeghzadeh, H., et al.: Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artif. Cells Nanomed. Biotechnol. 5, 1–9 (2017)CrossRefGoogle Scholar
  33. Farokhzad, O.C., Langer, R.: Impact of nanotechnology on drug delivery. Am. Chem. Soc. Nano 3(1), 16–20 (2009)Google Scholar
  34. Feldman, E.J., Lancet, J.E., Kolitz, J.E., Ritchie, E.K., Roboz, G.J., List, A.F., et al.: First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J. Clin. Oncol. 29, 979–985 (2011)CrossRefGoogle Scholar
  35. Feng, L., Yu, H., Liu, Y., Hu, X., Li, J., et al.: Construction of efficacious hepatoma-targeted nanomicelles non-covalently functionalized with galactose for drug delivery. Polym. Chem. 24, 7121–7130 (2014)CrossRefGoogle Scholar
  36. Ferrari, M.: Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005)CrossRefGoogle Scholar
  37. Gainzaa, G., Villullas, S., Pedraza, J.L., Hernandeza, R.M., Igartua, M. (2015). Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomed. Nanotechnol. Biol. Med. 11(6), 1551–73CrossRefGoogle Scholar
  38. Gambling, D., Hughes, T., Martin, G., Horton, W., Manvelian, G.: A comparison of Depodur, a novel, single-dose extended-release epidural morphine, with standard epidural morphine for pain relief after lower abdominal surgery. Anesth. Analg. 100, 1065–1074 (2005)CrossRefGoogle Scholar
  39. Gan, C.W., Feng, S.S.: Transferrin-conjugated NPs of poly(lactide)-D-α-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the bloodebrain barrier. Biomaterials 31(30), 7748–7757 (2010)CrossRefGoogle Scholar
  40. Gao, S., Sun, J., Fu, D., Zhao, H., Lan, M., Gao, F.: Preparation, characterization and pharmacokinetic studies oftacrolimus-dimethyl-cyclodextrin inclusion complex-loaded albumin NPs. Int. J. Pharm. 427, 410–416 (2012)CrossRefGoogle Scholar
  41. Garg, S.M., Paiva, I.M., Vakili, M.R., Soudy, R., Agopsowicz, K., Soleimani, A., et al.: Traceable PEO-poly(ester) micelles for breast cancer targeting: the effect of core structure and targeting peptide on micellar tumor accumulation. Biomaterials 144, 17–29 (2017)CrossRefGoogle Scholar
  42. Gopinath, P., Bhushan, B., Dubey, P., Kumar, S.U., Sachdev, A., Matai, I.: Bionanotherapeutics: niclosamide encapsulated albumin NPs as a novel drug delivery system for cancer therapy. RSC Adv. 5, 12078–12086 (2015)CrossRefGoogle Scholar
  43. Graf, N., Bielenberg, D.R., Kolishetti, N., Muus, C., Banyard, J., Farokhzad, O.C., et al.: αvβ3 integrin-targeted PLGA-PEG NPs for enhanced anti-tumor efficacy of a Pt(IV) prodrug. ACS Nano 26(5), 4530–4539 (2012)CrossRefGoogle Scholar
  44. Hann, I.M., Prentice, H.G.: Lipid-based amphotericin B: a review of the last 10 years of use. Int. J. Antimicrob. Agents 17, 161–169 (2001)CrossRefGoogle Scholar
  45. Hathout, M.R., Omran, M.K.: Gelatin-based particulate systems in ocular drug delivery. Pharm. Dev. Technol. 21(3), 379–386 (2015)CrossRefGoogle Scholar
  46. He, X., Xiang, N., Zhang, J., et al.: Encapsulation of teniposide into albumin NPs with greatlylowered toxicity and enhanced antitumor activity. Int. J. Pharm. 487, 250–259 (2015)CrossRefGoogle Scholar
  47. Heger, Z., Gumulec, J., Cernei, N., Tmejova, K., Kopel, P., Balvan, J., et al.: 17β-estradiol-containing liposomes as a novel delivery system for the antisense therapy of ER-positive breast cancer: an in vitro study on the MCF-7 cell line. Oncol. Rep. 33(2), 921–929 (2014)CrossRefGoogle Scholar
  48. Irache, J.M., Espuelas, S.: Nanotechnologies for the life sciences, albumin NPs. Biol. Pharm. Nanomater. 2, 185–218 (2006)Google Scholar
  49. Jahangirian, H., Ghasemian Lemraski, E., Webster, T.J.: A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int. J. Nanomed. 12, 2957–2978 (2017)CrossRefGoogle Scholar
  50. Jahanshahi, M.: Re-design of downstream processing techniques for nanoparticulate bioproducts. Iran. J. Biotechnol. 2, 1–12 (2004)Google Scholar
  51. Jain, A., Chasoo, G., Singh, S.K., Saxena, A.K., Jain, S.K.: Transferrin-appended PEGylated NPs for temozolomide delivery to brain: in vitro characterization. J. Microencapsul. 28(1), 21–28 (2011)CrossRefGoogle Scholar
  52. Jain, A., Jain, K., Kumar Mehra, N., Jain, N.K.: Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells. J. Nanopart. Res. 15, 2003 (2013)CrossRefGoogle Scholar
  53. Jain, A., Jain, S.K.: Multipronged strategic delivery of paclitaxel-topotecan using engineered liposomes to ovarian cancer. Drug Dev. Ind. Pharm. 42(1), 136–149 (2016)CrossRefGoogle Scholar
  54. Jameela, S.R., Jayakrisnan, A.: Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials 16, 769–775 (1995)CrossRefGoogle Scholar
  55. Jayaraman, M., Ansell, S.M., Mui, B.L., Tam, Y.K., Chen, J., Du, X., et al.: Maximizing the potency of siRNA lipid NPs for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. Engl. 51(34), 8529–8533 (2012)CrossRefGoogle Scholar
  56. Jintapattanakit, A., Junyaprasert, V.B., Kissel, T.J.: The role of mucoadhesion of trimethyl chitosan and PEGylated trimethyl chitosan nanocomplexes in insulin uptake. J. Pharm. Sci. 98, 4818–4830 (2009)CrossRefGoogle Scholar
  57. Johnston, M.J., Semple, S.C., Klimuk, S.K., Edwards, K., Eisenhardt, M.L., Leng, E.C., et al.: Therapeutically optimized rates of drug release can be achieved by varying the drug-to-lipid ratio in liposomal vincristine formulations. Biochem. Biophys. Acta. 1758, 55–64 (2006)CrossRefGoogle Scholar
  58. Ju, R.J., Cheng, L., Qiu, X., Liu, S., Song, X.L., Peng, X.M., et al.: Hyaluronic acid modified daunorubicin plus honokiol cationic liposomes for the treatment of breast cancer along with the elimination vasculogenic mimicry channels. J. Drug Target., 1–23 (2018)Google Scholar
  59. Kapoor, D.N., Bhatia, A., Kaur, R., Sharma, R., Kaur, G., Dhawan, S.: PLGA: a unique polymer for drug delivery. Ther. Deliv. 6(1), 41–58 (2015)CrossRefGoogle Scholar
  60. Kazunori, K., Glenn, S.K., Masayuki, Y., Teruo, O., Yasuhisa, S.: Block copolymer micelles as vehicles for drug delivery. J. Controlled Release 24, 119–132 (1993)CrossRefGoogle Scholar
  61. Kim, J., Wilson, D.R., Zamboni, C.G., Green, J.J.: Targeted polymeric NPs for cancer gene therapy. J. Drug Target. 23(7–8), 627–641 (2015)CrossRefGoogle Scholar
  62. Kim, J.H., Kim, Y.S., Kim, S.W., Park, J.H., Kim, K.M., Choi, K.W., et al.: Hydrophobically modified glycol chitosan NPs as carriers for paclitaxel. J. Controlled Release 111, 228–234 (2006)CrossRefGoogle Scholar
  63. Kim, J.K., Kim, H.J., Chung, J.Y., Lee, J.H., Young, S.B., Kim, Y.H.: Natural and synthetic biomaterials for controlled drug delivery. Arch. Pharmacal Res. 37(1), 60–68 (2014)CrossRefGoogle Scholar
  64. Kim, T.H., Jiang, H.H., Youn, Y.S., et al.: Preparation and characterization of water-soluble albumin-bound curcumin NPs with improved antitumor activity. Int. J. Pharm. 403, 285–291 (2011)CrossRefGoogle Scholar
  65. Kirpotin, D.B., Drummond, D.C., Shao, Y., Shalaby, M.R., Hong, K., Nielsen, U.B., et al.: Internalization in animal models does not increase tumor localization but does increase antibody targeting of long-circulating lipidic NPs. Can. Res. 66, 6732–6740 (2006)CrossRefGoogle Scholar
  66. Kobayashi, T., Tsukagoshi, S., Sakurai, Y.: Enhancement of the cancer chemotherapeutic effect of cytosine arabinoside entrapped in liposomes on mouse leukemia L-1210. Gann 6, 719–720 (1975)Google Scholar
  67. Kouchakzadeh, H., Sadat Safavi, M., Shojaosadati, S.A.: Efficient delivery of therapeutic agents by using targeted albumin NPs. Adv. Protein Chem. Struct. Biol. 98, 121–138 (2015)CrossRefGoogle Scholar
  68. Kouchakzadeh, H., Shojaosadati, S.A.: Protein-based NPs as a nanobiotechnological tool for cancer theranostics. New Biotechnol. 6, 1232 (2016a)Google Scholar
  69. Kouchakzadeh, H., Shojaosadati, S.A.: The prominent role of protein-based delivery systems on the development of cancer treatment. Curr. Pharm. Des. 22(22), 3455–65 (2016b)CrossRefGoogle Scholar
  70. Kouchakzadeh, H., Shojaosadati, S.A., Maghsoudi, A., Vasheghani Farahani, A.: Optimization of PEGylation conditions for BSA NPs using response surface methodology. AAPS PharmSciTech. 11(3), 1206–1211 (2010)CrossRefGoogle Scholar
  71. Kouchakzadeh, H., Shojaosadati, S.A., Mohammadnejad, J., Paknejad, M., Rasaee, M.J.: Attachment of an anti-MUC1 monoclonal antibody to 5-FU loaded BSA NPs for active targeting of breast cancer cells. Hum. Antibodies 21, 49–56 (2012)CrossRefGoogle Scholar
  72. Kouchakzadeh, H., Shojaosadati, S.A., Shokri, F.: Efficient loading and entrapment of tamoxifen inhuman serum albumin based nanoparticulate delivery system by a modified desolvation technique. Chem. Eng. Res. Des. 92, 1681–1692 (2014)CrossRefGoogle Scholar
  73. Kouchakzadeh, H., Shojaosadati, S.A., Tahmasebi, F., Shokri, F.: Optimization of an anti-HER2 monoclonal antibody targeted delivery system using PEGylated human serum albumin NPs. Int. J. Pharm. 447(1–2), 62–69 (2013)CrossRefGoogle Scholar
  74. Kouchakzadeh, H., Soudi, T., Heshmati Aghda, N., Shojaosadati, S.A.: Ligand-modified biopolymeric NPs as efficient tools for targeted cancer therapy. Curr. Pharm. Des. 23(35), 5336–5348 (2017)Google Scholar
  75. Kratz, F.: Albumin as a drug carrier: design of prodrugs, drug conjugates and NPs. J. Controlled Release 132(3), 171–181 (2008)CrossRefGoogle Scholar
  76. Kratz, F., Fichtner, I., Beyer, U.: Antitumor activity of acid labile transferrin and albumin doxorubicin conjugates in in vitro and in vivo human tumour xenograft model. Eur. J. Cancer 33, 175 (1997)CrossRefGoogle Scholar
  77. Krauze, M.T., Noble, C.O., Kawaguchi, T., Drummond, D., Kirpotin, D.B., Yamashita, Y., et al.: Convection enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts. Neuro Oncology 9, 393–403 (2007)CrossRefGoogle Scholar
  78. Kushwah, V., Kumar Agrawa, A., Parkash Dora, C., Mallinson, D., Lamprou, D.A., Gupta, R.C., et al.: Novel gemcitabine conjugated albumin NPs: a potential strategy to enhance drug efficacy in pancreatic cancer treatment. Pharm. Res. 34(11), 2295–2311 (2017)CrossRefGoogle Scholar
  79. Feng, L., Gao, M., Tao, D., Chen, Q., Hu, X., et al.: Cisplatin-prodrug-constructed liposomes as a versatile theranostic nanoplatform for bimodal imaging guided combination cancer therapy. Adv. Func. Mater. 26(13), 2207–2217 (2016)CrossRefGoogle Scholar
  80. Labhasetwar, V.: Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery. Curr. Opin. Biotechnol. 16, 674–680 (2005)CrossRefGoogle Scholar
  81. Ladju, R.B., Pascut, D., Massi, M.N., Tiribelli, C., Sukowati, C.H.C.: Aptamer: a potential oligonucleotide nanomedicine in the diagnosis and treatment of hepatocellular carcinoma. Oncotarget 9(2), 2951–2961 (2017)Google Scholar
  82. Laha, A., Bhutani, U., Mitra, K., Majumdar, S.: Fast and slow release: synthesis of gelatin casted-film based drug delivery system. Mater. Manuf. Processes 31(2), 223–230 (2015)CrossRefGoogle Scholar
  83. Larsen, M.T., Kuhlmann, M., Hvam, M.L., Howard, K.A.: Albumin-based drug delivery: harnessing nature to cure disease. Mol. Cell. Ther. 4(3), 1–12 (2016)Google Scholar
  84. Lassalle, V., Ferreira, M.L.: PLA nano- and microparticles for drug delivery: an overview of the methods of preparation. Macromol. Biosci. 7, 767–783 (2007)CrossRefGoogle Scholar
  85. Lee, S.J., Kim, H.J., Huh, Y.M., Kim, I.W., Jeong, J.H., Kim, J.C., et al.: Functionalized magnetic PLGA nanospheres for targeting and bioimaging of breast cancer. J. Nanosci. Nanotechnol. 18(3), 1542–1547 (2018)CrossRefGoogle Scholar
  86. Li, C., Li, Y., Gao, Y., Wei, N., Zhao, X., et al.: Direct comparison of two albumin-based paclitaxel-loaded nanoparticle formulations: is the cross linked version more advantageous? Int. J. Pharm. 468, 15–25 (2014)CrossRefGoogle Scholar
  87. Li, L., Lu, Y., Jiang, C., Zhu, Y., Yang, X., Hu, X., et al.: Actively targeted deep tissue imaging and photothermal-chemo therapy of breast cancer by antibodyfunctionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell NPs. Adv. Func. Mater. 28(5), 1704623 (2018)CrossRefGoogle Scholar
  88. Liechty, W.B., Kryscio, D.R., Slaughter, B.V., Peppas, N.A.: Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng. 1, 149–173 (2010)CrossRefGoogle Scholar
  89. Lin, T., Zhao, P., Jiang, Y., Tang, Y.: Blood–brain-barrier-penetrating albumin NPs for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano 10, 9999–10012 (2016)CrossRefGoogle Scholar
  90. Liu, C.H., Liu, X.N., Wang, G.L., Hei, Y., Meng, S.H., Yang, L.F., et al.: A dual-mediated liposomal drug delivery system targeting the brain: rational construction, integrity evaluation across the blood–brain barrier, and the transporting mechanism to glioma cells. Int. J. Nanomed. 2, 2407–2425 (2017)CrossRefGoogle Scholar
  91. Liu, J., Wei, T., Zhao, J., Huang, Y., Deng, H., Kumar, A., et al.: Multifunctional aptamer-based NPs for targeted drug delivery to circumvent cancer resistance. Biomaterials 91, 44–56 (2016)CrossRefGoogle Scholar
  92. Liua, p., Situa, J.Q., Lia, W.S., Shana, C.L., Youa, J., Yuana, H., et al.: High tolerated paclitaxel nano-formulation delivered by poly(lactic-coglycolic acid)-g-dextran micelles to efficient cancer therapy. Nanomed. Nanotechnol. Biol. Med. 11, 855–866 (2015)CrossRefGoogle Scholar
  93. Lohcharoenkal, W., Wang, L., Chen, T.C., Rojanasakul, Y.: Protein NPs as drug delivery carriers for cancer therapy. BioMed Res. Int., 180549 (2014)Google Scholar
  94. Lozano, M.V., Esteban, H., Brea, J., Loza, M.I., Torres, D., Alonso, M.J.: Intracellular delivery of docetaxel using freeze-dried polysaccharide nanocapsules. J. Microencapsul. 30(2), 181–188 (2013)CrossRefGoogle Scholar
  95. Lu, Y., Sega, E., Leamon, C.P., Low, P.S.: Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential. Adv. Drug Deliv. Rev. 56, 1161–1176 (2004)CrossRefGoogle Scholar
  96. Lucia, M.B., Maria, A.H., Josefa, A.F., Mercedes, F.A.: Use of flow Focusing® technology to produce tobramycin-loaded PLGA microparticles for pulmonary drug delivery. Med. Chem. 8(4), 533–540 (2012)CrossRefGoogle Scholar
  97. Luo, Y., Wang, Q.: Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int. J. Biol. Macromol. 64, 353–367 (2014)CrossRefGoogle Scholar
  98. Lv, Q., Li, L.M., Han, M., Tang, X.J., Yao, J.N., Yinget, X.Y., et al.: Characteristics of sequential targeting of brain glioma for transferrin-modified cisplatin liposome. Int. J. Pharm. 444(1–2), 1–9 (2013)CrossRefGoogle Scholar
  99. Makadia, H., Siegel, S.: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377–1397 (2011)CrossRefGoogle Scholar
  100. Manisekaran, R.: Introduction to Nanomedicine and Cancer Therapy. Springer Publishing Group, pp. 1–36 (2018)Google Scholar
  101. Marty, J.J., Oppenheim, R.C., Speiser, P.: NPs—a new colloidal drug delivery system. Pharm. Acta Helv. 53(1), 17–23 (1978)Google Scholar
  102. Maya, S., Sarmento, B., Kumar Lakshmanan, V., Menon, D., Seabra, V., Jayakumar, R.: Chitosan cross-linked docetaxel loaded EGF receptor targeted NPs for lung cancer cells. Int. J. Biol. Macromol. 69, 532–541 (2014)CrossRefGoogle Scholar
  103. Mazur, J., Roy, K., Kanwar, J.R.: Recent advances in nanomedicine and survivin targeting in brain cancers. Nanomedicine 13(1), 105–137 (2017)CrossRefGoogle Scholar
  104. McDaniel, J.R., Dewhirst, M.W., Chilkoti, A.: Actively targeting solid tumors with thermoresponsive drug delivery systems that respond to mild hyperthermia. Int. J. Hyperth. 29(6), 501–510 (2013)CrossRefGoogle Scholar
  105. Min, L., Jo, H., Song, K., Cho, M., Chun, Y.S., Jon, S., et al.: Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (−) prostate cancers. Biomaterials 32(8), 2124–2132 (2011)CrossRefGoogle Scholar
  106. Mitra, S., Gaur, U., Ghosh, P.C., et al.: Tumour targeted delivery of encapsulated dextranedoxorubicin conjugate using chitosan NPs as carrier. J. Controlled Release 74, 317–323 (2001)CrossRefGoogle Scholar
  107. Miura, Y., Takenaka, T., Toh, K., Wu, S., Nishihara, H., Kano, M.R., et al.: Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood–brain tumor barrier. ACS Nano 7(10), 8583–8592 (2013)CrossRefGoogle Scholar
  108. Mo, R., Jiang, T., Gu, Z.: Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew. Chem. 126(23), 5925–5930 (2014)CrossRefGoogle Scholar
  109. Moghimipour, E., Rezaei, M., Ramezani, Z., Kouchak, M., Amini, M., Ahmadi Angali, K., et al.: Folic acid-modified liposomal drug delivery strategy for tumor targeting of 5-fluorouracil. Eur. J. Pharm. Sci. 114, 166–174 (2018a)CrossRefGoogle Scholar
  110. Moghimipour, E., Rezaei, M., Ramezani, Z., Kouchak, M., Amini, M., Ahmadi Angali, K., et al.:. Transferrin targeted liposomal 5 fluorouracil induced apoptosis via mitochondria signaling pathway in cancer cells. Life Sci. 194, 104–110 (2018b)CrossRefGoogle Scholar
  111. Mornet, E., Carmoy, N., Lainé, C., Lemiègre, L., Gall, T.L., Laurent, I., et al.: Folate-equipped nanolipoplexes mediated efficient gene transfer into human epithelial cells. Int. J. Mol. Sci. 14(1), 1477–1501 (2013)CrossRefGoogle Scholar
  112. Movassaghian, S., Merkel, O.M., Torchilin, V.P.: Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(5), 691–707 (2015)CrossRefGoogle Scholar
  113. Nag, M., Gajbhiye, V., Kesharwani, P., Jain, N.K.: Transferrin functionalized chitosan-PEG NPs for targeted delivery of paclitaxel to cancer cells. Colloids Surf., B 148, 363–370 (2016)CrossRefGoogle Scholar
  114. Nguyen, K.T., Le, D.V., Do, D.H., Le, Q.H.: Development of chitosan graft pluronic®F127 copolymer NPs containing DNA aptamer for paclitaxel delivery to treat breast cancer cells. Adv. Natl. Sci. Nanosci. Nanotechnol. 7(2), 5018–5026 (2016)Google Scholar
  115. Nguyena, H.T., Trana, T.H., Thapa, R.K., Phunga, C.D., Shinb, B.S., Jeonga, J.H., et al.: Targeted co-delivery of polypyrrole and rapamycin by trastuzumab-conjugated liposomes for combined chemo-photothermal therapy. Int. J. Pharm. 527(1–2), 61–71 (2017)CrossRefGoogle Scholar
  116. Niu, C., Wang, Z., Lu, G., Krupka, T.M., Sun, Y., et al.: Doxorubicin loaded superparamagnetic PLGA iron oxide multifunctional microbubbles for dual mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials 34, 2307–2317 (2013)CrossRefGoogle Scholar
  117. Norouzi, P., amini, M., Mottaghitalab, F., Mirzazadeh Tekie F.S., Dinarvand, R., et al.: Design and fabrication of dual-targeted delivery system based on gemcitabine conjugated human serum albumin nanoparticles. Chem. Biol. Drug Des. (2017).  https://doi.org/10.1111/cbdd.13044
  118. Oh, H.R., Jo, H.Y., Park, J.S., Kim, D.E., Cho, J.Y., Kim, P.H., et al.: Galactosylated liposomes for targeted co-delivery of doxorubicin/vimentin siRNA to hepatocellular carcinoma. Nanomaterials 6(8), 141 (2016)CrossRefGoogle Scholar
  119. Ohya, Y., Shiratani, M., Kobayashi, H., Ouchi, T.: Release behavior of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. J. Macromol. Sci. Part A Pure Appl. Chem. 31(5), 629–642 (1994)CrossRefGoogle Scholar
  120. Pang, S.T., Lin, F.W., Chuang, C.K., Yang, H.W.: Co-delivery of docetaxel and p 44/42 MAPK siRNA using PSMA antibody-conjugated BSAPEI layer-by-layer NPs for prostate cancer target therapy. Macromolecular. Bioscience 17(5), 1600421Google Scholar
  121. Park, T.: Degradation of poly(D,L-lactic acid) microspheres: effect of molecular weight. J. Controlled Release 30(2), 161–173 (1994)CrossRefGoogle Scholar
  122. Patel, J., Amrutiya, J., Bhatt, P., Javia, A., Jain, M., Misra, A.: Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA NPs into EGFR overexpressed lung tumor cells. J. Microencapsul. 35(2), 204–217 (2018)CrossRefGoogle Scholar
  123. Patel, N.R., Rathi, A., Mongayt, D., Torchilin, V.P.: Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int. J. Pharm. 416, 296–299 (2011)CrossRefGoogle Scholar
  124. Patrick, M.R., Blair, I.J., Feneck, R.O., Sebel, P.S.: A comparison of the haemodynamic effects of propofol (‘Diprivan’) and thiopentone in patients with coronary artery disease. Postgrad. Med. J. 61, 23–27 (1985)CrossRefGoogle Scholar
  125. Peters, T.: Serum albumin. Adv. Protein Chem. 37, 161–245 (1985)CrossRefGoogle Scholar
  126. Ragelle, H., Danhier, F., Préat, V., Langer, R., Anderson, D.G.: Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin. Drug Deliv. 14(7), 851–864 (2016)CrossRefGoogle Scholar
  127. Rancan, F., Papakostas, D., Hadam, S., Hackbarth, S., Delair, T., Primard, C., et al.: Investigation of polylactic acid (PLA) NPs as drug delivery systems for local dermatotherapy. Pharm. Res. 26(8), 2027–2036 (2009)CrossRefGoogle Scholar
  128. Richard, B.M., Newton, P., Ott, L.R., Haan, D., Brubaker, A.N., Cole, P.I., et al.: The safety of EXPAREL® (bupivacaine liposome injectable suspension) administered by peripheral nerve block in rabbits and dogs. J. Drug Deliv. 2012, 962101 (2012)CrossRefGoogle Scholar
  129. Ruoslahti, E.: Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv. Mater. 24(28), 3747–3756 (2012)CrossRefGoogle Scholar
  130. Schwick, H.G., Heide, K.: Immunochemistry and immunology of collagen and gelatin. Bibl. Haematol. 33, 111–125 (1969)Google Scholar
  131. Senel, S., Ikinci, G., Kaş, S., Yousefi-Rad, A., Sargon, M.F., Hincal, A.A.: Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. Int. J. Pharm. 93(2), 197–203 (2000)CrossRefGoogle Scholar
  132. Shen, S., Mao, C.Q., Yang, X.Z., Du, X.J., Liu, Y., Zhu, Y.H., et al.: Cationic lipid-assisted polymeric nanoparticle mediated GATA2 siRNA delivery for synthetic lethal therapy of KRAS mutant non-small-cell lung carcinoma. Mol. Pharm. 11, 2612–2622 (2014)CrossRefGoogle Scholar
  133. Shi, Y., Su, C., Cui, W., Li, H., Liu, L., Feng, B., et al.: Gefitinib loaded folate decorated bovine serum albumin conjugated carboxymethyl betacyclodextrin NPs enhance drug delivery and attenuate autophagy in folate receptor-positive cancer cells. J. Nanobiotechnology 12, 43 (2014)CrossRefGoogle Scholar
  134. Soares, P.I.P., Sousa, A.I., Silva, J.C., Ferreira, I.M.M., Novo, C.M.M., Borges, J.P.: Chitosan-based NPs as drug delivery systems for doxorubicin: optimization and modelling. Carbohyd. Polym. 20(147), 304–312 (2016)CrossRefGoogle Scholar
  135. Srivastava, A., Yadav, T., Sharma, S., Nayak, A., Kumari, A., Mishra, N.: Polymers in drug delivery. J. Biosci. Med. 4, 69–84 (2016)Google Scholar
  136. Steele, T., Huang, C., Widjaja, E., Boey, F., Loo, J., Venkatraman, S.: The effect of polyethylene glycol structure on paclitaxel drug release and mechanical properties of PLGA thin films. Acta Biomater. 7, 1973–1983 (2011)CrossRefGoogle Scholar
  137. Taheri, A., Dinarvand, R., Ahadi, F., Khorramizadeh, M.R., Atyabi, F.: The in vivo antitumor activity of LHRH targeted methotrexate human serum albumin NPs in 4T1 tumor-bearing Balb/c mice. Int. J. Pharm. 431, 183–189 (2012a)Google Scholar
  138. Taheri, A., Dinarvand, R., Atyabi, F., Ghahremani, M.H., Ostad, S.N.: Trastuzumab decorated methotrexate–human serum albumin conjugated NPs for targeted delivery to HER2 positive tumor cells. Eur. J. Pharm. Sci. 47(2), 331–40 (2012b)Google Scholar
  139. Tan, Y.L., Ho, H.K.: Navigating albumin based nanoparticles through various drug delivery routes. Drug Discov. Today 5, 1108–1114 (2018)CrossRefGoogle Scholar
  140. Tang, J., Zhang, L., Liu, Y., Zhang, Q., Qin, Y., Yin, Y., et al.: Synergistic targeted delivery of payload into tumor cells by dual-ligand liposomes co-modified with cholesterol anchored transferrin and TAT. Int. J. Pharm. 454(1), 31–40 (2013)CrossRefGoogle Scholar
  141. Thulasidasan, A.T., Retnakumari, A.P., Shankar, M., Vijayakurup, V., Anwar, S., Thankachan, S., et al.: Folic acid conjugation improves the bioavailability and chemosensitizing efficacy of curcumin-encapsulated PLGA-PEG NPs towards paclitaxel chemotherapy. Oncotarget 8(64), 107374–107389 (2017)CrossRefGoogle Scholar
  142. Vinogradov, S., Batrakova, E., Kabanov, A.: Poly(ethylene glycol)–polyethyleneimine NanoGel™ particles: novel drug delivery systems for antisense oligonucleotides. Colloids Surf., B 16(1–4), 291–304 (1999)CrossRefGoogle Scholar
  143. Wagner, A.M., Spencer, D.S., Peppas, N.A.: Advanced architectures in the design of responsive polymers for cancer nanomedicine. J. Appl. Polym. Sci. 135(24), 46154 (2018)CrossRefGoogle Scholar
  144. Wagner, S., Rothweiler, F., Anhorn, M.G., Sauer, D., Riemann, I., et al.: Enhanced drug targeting by attachment of an anti αv integrin antibody to doxorubicin loaded human serum albumin nanoparticles. Biomaterials 31(8), 2388–2398 (2010)CrossRefGoogle Scholar
  145. Wan, X., Zheng, X., Pang, X., Zhang, Z., Jing, T., et al.: The potential use of lapatinib loaded human serum albumin NPs in the treatment of triple-negative breast cancer. Int. J. Pharm. 484, 16–28 (2015)CrossRefGoogle Scholar
  146. Wang, J., Wu, Z., Pan, G., Ni, J., Xie, F., Jiang, B., et al.: Enhanced doxorubicin delivery to hepatocellular carcinoma cells via CD147 antibody-conjugated immunoliposomes. Nanomed. Nanotechnol. Biol. Med. 17 (2017), Article in PressGoogle Scholar
  147. Wang, M., Thanou, M.: Targeting NPs to cancer. Pharmacol. Res. 62(2), 90–99 (2010)CrossRefGoogle Scholar
  148. Wang, S., Mei, X.G., Goldberg, S.N., Ahmed, M., Lee, J.C., Gong, W., et al. (2016a). Does thermosensitive liposomal vinorelbine improve end-point survival after percutaneous radiofrequency ablation of liver tumors in a mouse model? Radiol. Soc. N. Am. J. 279(3), 762–772CrossRefGoogle Scholar
  149. Wang, W., Balk, M., Deng, Z., Wischke, C., Gossen, M., Behl, M, et al.: Engineering biodegradable micelles of polyethylenimine-based amphiphilic block copolymers for efficient DNA and siRNA delivery. J. Control. Release 28(242) 71–79 (2016b)CrossRefGoogle Scholar
  150. Wang, X., Zhen, X., Wang, J., Zhang, J., Wu, W., Jiang, X.: Doxorubicin delivery to 3D multicellular spheroids and tumors based on boronic acid-rich chitosan NPs. Biomaterials 34, 4667–4679 (2013)CrossRefGoogle Scholar
  151. Wang, Y., Li, P., Kong, L.: Chitosan-modified PLGA NPs with versatile surface for improved drug delivery. AAPS PharmSciTech. 14(2), 585–592 (2013a)CrossRefGoogle Scholar
  152. Wang, Y., Zhang, X., Yu, P., Li, C.: Glycopolymer micelles with reducible ionic cores for hepatocytes-targeting delivery of DOX. Int. J. Pharm. 441(1–2), 170–180 (2013b)CrossRefGoogle Scholar
  153. Weber, C., Coester, C., Kreuter, J., Langer, K.: Desolvation process and surface characterisation of protein NPs. Int. J. Pharm. 194(1), 91–102 (2000)CrossRefGoogle Scholar
  154. Wei, Y., Li, L., Xi, Y., Qian, S., Gao, Y., Zhang, J.: Sustained release and enhanced bioavailability of injectablescutellarin-loaded bovine serum albumin NPs. Int. J. Pharm. 476, 142–148 (2014)CrossRefGoogle Scholar
  155. Wen, X., Li, J., Cai, D., Yue, L., Wang, Q., Zhou, L., et al.: Anticancer efficacy of targeted shikonin liposomes modified with RGD in breast cancer cells. Molecules 23(2), 268 (2018)CrossRefGoogle Scholar
  156. Widera, A., Norouziyan, F., Shen, W.C.: Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery. Adv. Drug Deliv. Rev. 55(11), 1439–1466 (2003)CrossRefGoogle Scholar
  157. Wilson, B., Ambika, R., Patel, D.K., Jenita, J.L., Priyadarshini, S.R.: NPs based on albumin: Preparation, characterizationand the use for 5-flurouracil delivery. Int. J. Biol. Macromol. 51, 874–878 (2012)CrossRefGoogle Scholar
  158. Xiao, J., Yu, H.: Gemcitabine conjugated chitosan and double antibodies (Abc-GC-Gemcitabine NPs) enhanced cytoplasmic uptake of gemcitabine and Inhibit proliferation and metastasis in human SW1990 pancreatic cancer cells. Med. Sci. Monit. 23, 1613–1620 (2017)MathSciNetCrossRefGoogle Scholar
  159. Xu, L., Xu, S., Wang, H., Zhang, J., Zhang, J., Chen, Z., Pan, L., et al.: Enhancing the efficacy and safety of doxorubicin against hepatocellular carcinoma through a modular assembly approach: the combination of polymeric prodrug design, nanoparticle encapsulation, and cancer cell-specific drug targeting. ACS Appl. Mater. Interfaces 10(4), 3229–3240 (2018)CrossRefGoogle Scholar
  160. Xu, W., Siddiqui, I.A., Nihal, M., Pilla, S., Rosenthal, K., Mukhtar, H., et al.: Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials 34(21), 5244–5253 (2013)CrossRefGoogle Scholar
  161. Yang, C., Neshatian, M., Prooijen, M.V., Chithrani, D.B.: Cancer nanotechnology: enhanced therapeutic response using peptide-modified gold NPs. J. Nanosci. Nanotechnol. 14(7), 4813–4819 (2014)CrossRefGoogle Scholar
  162. Yang, L., Cui, F., Cun, D., Tao, A., Shi, K., Lin, W.: Preparation, characterization and biodistribution of the lactone form of 10-hydroxycamptothecin (HCPT)-loaded bovine serum albumin (BSA) NPs. Int. J. Pharm. 340, 163–172 (2007)CrossRefGoogle Scholar
  163. Yang, X., Yang, S., Chai, H., Yang, Z., Lee, R.J., Liao, W., et al.: A novel isoquinoline derivative anticancer agent and its targeted delivery to tumor cells using transferrin-conjugated liposomes. Public Libr. Sci. 10(8), e0136649 (2015)Google Scholar
  164. Ye, F., Barrefelt, Å., Asem, H., Abedi-Valugerdi, M., El-Serafi, I., Saghafian, M., et al.: Biodegradable polymeric vesicles containing magnetic NPs, quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials 35, 3885–3894 (2014)CrossRefGoogle Scholar
  165. Yeh, C.Y., Hsiao, J.K., Wang, Y.P., Lan, C.H., Wu, H.C.: Peptide-conjugated NPs for targeted imaging and therapy of prostate cancer. Biomaterials 99, 1–15 (2016)CrossRefGoogle Scholar
  166. Zhang, C., Gao, S., Jiang, W., Lin, S., Du, F., Li, Z., et al.: Targeted minicircle DNA delivery using folate-poly(ethylene glycol)-polyethylenimine as non-viral carrier. Biomaterials 31(23), 6075–6086 (2010)CrossRefGoogle Scholar
  167. Zhang, Y., Chan, H.F., Leong, K.W.: Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Deliv. Rev. 65, 104–120 (2013)CrossRefGoogle Scholar
  168. Zhong, Y., Meng, F., Deng, C., Zhong, Z.: Ligand-directed active tumor-targeting polymeric NPs for cancer chemotherapy. Am. Chem. Soc. (ACS) 15(6), 1955–1969 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shima Asfia
    • 1
  • Mahsa Mohammadian
    • 1
  • Hasan Kouchakzadeh
    • 1
    Email author
  1. 1.Protein Research CenterShahid Beheshti UniversityVelenjakIran

Personalised recommendations