Advertisement

Nanotopographical Control of Cell Assembly into Supracellular Structures

  • Francesco GentileEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 104)

Abstract

Cell adhesion is a result of a complex interplay between cell signalling, physical and chemical properties of materials, and biological functions of cells. In the following, we will examine whether and to which extent one can control cell adhesion and organization through nano-topography. This chapter is dedicated to the articulation of this topic. It is a review of some important contributions that have joined nanotechnology, cell biology and cell assembly.

References

  1. Accardo, A., Blatché, M.-C., Courson, R., Loubinoux, I., Thibault, C., Malaquin, L., Vieu, C.: Multiphoton direct laser writing and 3D imaging of polymeric freestanding architectures for cell colonization. Small 1700621, 1–11 (2017)Google Scholar
  2. Ankam, S., Suryana, M., Chan, L.Y., Moe, A.A.K., Teo, B.K.K., Law, J.B.K., Sheetz, M.P., Low, H.Y., Yim, E.K.F.: Substrate topography and size determine the fate of human embryonic stem cells to neuronal or glial lineage. Acta Biomater. 9, 4535–4545 (2013)CrossRefGoogle Scholar
  3. Armstrong, N.J., Painter, K.J., Sherratt, J.A.: A continuum approach to modelling cell–cell adhesion. J. Theor. Biol. 243, 98–113 (2006)MathSciNetCrossRefGoogle Scholar
  4. Arnold, M., Ada Cavalcanti-Adam, E., Glass, R., Blümmel, J., Eck, W., Kantlehner, M., Kessler, H., Spatz, J.P.: Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem 5(3), 383–388 (2004)CrossRefGoogle Scholar
  5. Baranes, K., Chejanovsky, N., Alon, N., Sharoni, A., Shefi, O.: Topographic cues of nano-scale height direct neuronal growth pattern. Biotechnol. Bioeng. 109(7), 1791–1797 (2012)CrossRefGoogle Scholar
  6. Battista, E., Causa, F., Lettera, V., Panzetta, V., Guarnieri, D., Fusco, S., Gentile, F., Netti, P.A.: Ligand engagement on material surfaces is discriminated by cell mechanosensoring. Biomaterials 45, 72–80 (2015)CrossRefGoogle Scholar
  7. Bell, G.I.: Models for the specific adhesion of cells to cells. Science 618, 618–627 (1978)CrossRefGoogle Scholar
  8. Bruno, L., Decuzzi, P., Gentile, F.: Stress distribution retrieval in granular materials: a multi-scale model and digital image correlation measurements. Opt. Lasers Eng. 76, 17–26 (2015)CrossRefGoogle Scholar
  9. Coluccio, M.L., Gentile, F., Francardi, M., Perozziello, G., Malara, N., Candeloro, P., Di Fabrizio, E.: Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications. Sensors 14(4), 6056–6083 (2014)CrossRefGoogle Scholar
  10. Coluccio, M., De Vitis, S., Strumbo, G., Candeloro, P., Perozziello, G., Di Fabrizio, E., Gentile, F.: Inclusion of gold nanoparticles in meso-porous silicon for the SERS analysis of cell adhesion on nano-structured surfaces. Microelectron. Eng. 158, 102–106 (2016)CrossRefGoogle Scholar
  11. Coombs, D., Dembo, M., Wofs, C., Goldstein, B.: Equilibrium thermodynamics of cell-cell adhesion mediated by multiple ligand-receptor pairs. Biophys. J. 86, 1408–1423 (2004)CrossRefGoogle Scholar
  12. Crutchfield, J.P.: Between order and chaos. Nat. Phys. 8, 17–24 (2012)CrossRefGoogle Scholar
  13. de la Rocha, J., Parga, N.: Short-term synaptic depression causes a non-monotonic response to correlated stimuli. J. Neurosci. 25(37), 8416–8431 (2005)CrossRefGoogle Scholar
  14. De Vitis, S., Coluccio, M.L., Gentile, F., Malara, N., Perozziello, G., Dattola, E., Candeloro, P., Di Fabrizio, E.: Surface enhanced raman spectroscopy measurement of MCF7 cells adhesion in confined micro-environments. Opt. Lasers Eng. 76, 9–16 (2015)Google Scholar
  15. De Vitis, S., Coluccio, M., Strumbo, G., Malara, N., Fanizzi, F., De Pascali, S., Perozziello, G., Candeloro, P., Di Fabrizio, E., Gentile, F.: Combined effect of surface nano-topography and delivery of therapeutics on the adhesion of tumor cells on porous silicon substrates. Microelectron. Eng. 158, 6–10 (2016)CrossRefGoogle Scholar
  16. Debenedetti, P.G., Stillinger, F.H.: Supercooled liquids and the glass transition. Nature 410, 259–267 (2001)CrossRefGoogle Scholar
  17. Decuzzi, P., Ferrari, M.: Modulating cellular adhesion through nanotopography. Biomaterials 31, 173–179 (2010)CrossRefGoogle Scholar
  18. Evans, E.A., Calderwood, D.A.: Forces and bond dynamics in cell adhesion. Science 316, 1148–1153 (2007)CrossRefGoogle Scholar
  19. Farhadifar, R., Roper, J.-C., Aigouy, B., Eaton, S., Julicher, F.: The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007)CrossRefGoogle Scholar
  20. Ferrari, A., Cecchini, M., Dhawan, A., Micera, S., Tonazzini, I., Stabile, R., Pisignano, D., Beltram, F.: Nanotopographic control of neuronal polarity. Nano Lett. 11, 505–511 (2011)CrossRefGoogle Scholar
  21. FitzHugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biol. 17, 257–278 (1955)Google Scholar
  22. Foll, H., Christophersen, M., Carstensen, J., Hasse, G.: Formation and application of porous silicon. Mater. Sci. Eng. 39, 93–141 (2002)CrossRefGoogle Scholar
  23. Geiger, B., Spatz, J.P., Bershadsky, A.D.: Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10, 21–33 (2009)CrossRefGoogle Scholar
  24. Geiger, B., Bershadsky, A., Pankov, R., Yamada, K.M.: Transmembrane extracellular matrix-cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2, 793–805 (2001)CrossRefGoogle Scholar
  25. Gentile, F., Tirinato, L., Battista, E., Causa, F., Liberale, C., Di Fabrizio, E., Decuzzi, P.: Cells preferentially grow on rough substrates. Biomaterials 31(28), 7205–7212 (2010)CrossRefGoogle Scholar
  26. Gentile, F., Battista, E., Accardo, A., Coluccio, M., Asande, M., Perozziello, G., Das, G., Liberale, C., De Angelis, F., Candeloro, P., Decuzzi, P., Di Fabrizio, E.: Fractal structure can explain the increased hydrophobicity of nanoporous silicon films. Microelectron. Eng. 88, 2537–2540 (2011)CrossRefGoogle Scholar
  27. Gentile, F., Coluccio, M., Coppedè, N., Mecarini, F., Das, G., Liberale, C., Tirinato, L., Leoncini, M., Perozziello, G., Candeloro, P., De Angelis, F., Di Fabrizio, E.: Superhydrophobic surfaces as smart platforms for the analysis of diluted biological solutions. ACS Appl. Mater. Interfaces 4(6), 3213–3224 (2012a)CrossRefGoogle Scholar
  28. Gentile, F., Rocca, R.L., Marinaro, G., Nicastri, A., Toma, A., Paonessa, F., Cojoc, G., Liberale, C., Benfenati, F., Di Fabrizio, E., Decuzzi, P.: Differential cell adhesion on mesoporous silicon substrates. ACS Appl. Mater. Interfaces 4(6), 2903–2911 (2012b)CrossRefGoogle Scholar
  29. Gentile, F., Coluccio, M., Toma, A., Rondanina, E., Leoncini, M., De Angelis, F., Das, G., Dorigoni, C., Candeloro, P., Di Fabrizio, E.: Electroless deposition dynamics of silver nanoparticles clusters: a diffusion limited aggregation (DLA) approach Microelectron. Eng. 98, 359–362 (2012c)CrossRefGoogle Scholar
  30. Gentile, F., Medda, R., Cheng, L., Battista, E., Scopelliti, P., Milani, P., Cavalcanti-Adam, E., Decuzzi, P.: Selective modulation of cell response on engineered fractal silicon substrates. Sci. Rep. 3, 1461 (2013)Google Scholar
  31. Gentile, F., Coluccio, M.L., Candeloro, P., Barberio, M., Perozziello, G., Francardi, M., Di Fabrizio, E.: Electroless deposition of metal nanoparticle clusters: effect of pattern distance. J. Vac. Sci. Technol. B 32(3), 031804:031801–031812 (2014a)CrossRefGoogle Scholar
  32. Gentile, F., Monteferrante, M., Chiodo, L., Toma, A., Coluccio, M.L., Ciccotti, C., Di Fabrizio, E.: Electroless formation of silver nanoaggregates: an experimental and molecular dynamics approach. Mol. Phys. (2014b) (in press)Google Scholar
  33. Glotzer, S.: Nanotechnology: shape matters. Nature 481, 450–452 (2012)CrossRefGoogle Scholar
  34. Glotzer, S.C., Anderson, J.A.: Nanoparticle assembly: made to order. Nat. Mater. 9(11), 885–887 (2010)CrossRefGoogle Scholar
  35. Glotzer, S.C., Solomon, M.J.: Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007)CrossRefGoogle Scholar
  36. Godefroo, S., Hayne, M., Jivanescu, M., Stesmans, A., Zacharias, M., Lebedev, O.I., Tendeloo, G.V., Moschalkov, V.V.: Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 3, 174–178 (2008)CrossRefGoogle Scholar
  37. Goia, D., Matijevic, E.: Preparation of monodispersed metal particles. New J. Chem. 22, 1203–1215 (1998)CrossRefGoogle Scholar
  38. Gunduz, C., Yener, B., Gultekin, S.H.: The cell graphs of cancer. Bioinformatics 20, 145–151 (2004)CrossRefGoogle Scholar
  39. Herminghaus, S.: Roughness-induced non-wetting. Europhys. Lett. 52(165), 165–170 (2000)CrossRefGoogle Scholar
  40. Hu, Y., Bouamrani, A., Tasciotti, E., Li, L., Liu, X., Ferrari, M.: Tailoring of the nanotexture of mesoporous silica films and their functionalized derivatives for selectively harvesting low molecular weight protein. ACS Nano 4(1), 439–451 (2010)CrossRefGoogle Scholar
  41. Huang, Z., Jiang, X.: Micro/nano-scale materials and structures for constructing neuronal networks and addressing neurons. J. Mater. Chem. C 1, 7652–7662 (2013)CrossRefGoogle Scholar
  42. Jackson, A.M., Myerson, J.W., Stellacci, F.: Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nat. Mater. 3, 330–336 (2004)CrossRefGoogle Scholar
  43. Kanchanawong, P., Shtengel, G., Pasapera, A.M., Ramko, E.B., Davidson, M.W., Hess, H.F., Waterman, C.M.: Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–586 (2010)CrossRefGoogle Scholar
  44. Khung, Y.L., Barritt, G., Voelcker, N.H.: Using continuous porous silicon gradients to study the influence of surface topography on the behaviour of neuroblastoma cells. Exp. Cell Res. 314, 789–800 (2008)CrossRefGoogle Scholar
  45. Kim, M.-H., Park, M., Kanga, K., Choi, I.S.: Neurons on nanometric topographies: insights into neuronal behaviors in vitro. Biomaterials Science 2, 148–155 (2014)CrossRefGoogle Scholar
  46. Lafuma, A., Quéré, D.: Superhydrophobic states. Nat. Mater. 2, 457–460 (2003)CrossRefGoogle Scholar
  47. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001)CrossRefGoogle Scholar
  48. Limongi, T., Cesca, F., Gentile, F., Marotta, R., Ruffilli, R., Barberis, A., Maschio, M.D., Petrini, E.M., Santoriello, S., Benfenati, F., Di Fabrizio, E.: Nanostructured superhydrophobic substrates trigger the development of 3D neuronal networks. Small 9(3), 402–412 (2013)CrossRefGoogle Scholar
  49. Marinaro, G., La Rocca, R., Toma, A., Barberio, M., Cancedda, L., Di Fabrizio, E., Decuzzi, P., Gentile, F.: Networks of neuroblastoma cells on porous silicon substrates reveal a small world topology. Integr. Biol. 7(2), 184–197 (2015)CrossRefGoogle Scholar
  50. Meakin, P.: Diffusion controlled deposition on surfaces: cluster size distribution, interface exponents, and other properties. Phys. Rev. B 30(8), 4207–4214 (1984)CrossRefGoogle Scholar
  51. Migliorini, E., Grenci, G., Ban, J., Pozzato, A., Tormen, M., Lazzarino, M., Torre, V., Ruaro, M.E.: Acceleration of neuronal precursors differentiation induced by substrate nanotopography. Biotechnol. Bioeng. 108(11), 2736–2746 (2011)CrossRefGoogle Scholar
  52. Migliorini, E., Ban, J., Grenci, G., Andolfi, L., Pozzato, A., Tormen, M., Torre, V., Lazzarino, M.: Nanomechanics controls neuronal precursors adhesion and differentiation. Biotechnol. Bioeng. 110(8), 2301–2310 (2013)CrossRefGoogle Scholar
  53. Moe, A.A.K., Suryana, M., Marcy, G., Lim, S.K., Ankam, S., Goh, J.Z.W., Jin, J., Teo, B.K.K., Law, J.B.K., Low, H.Y., Goh, E.L.K., Sheetz, M.P., Yim, E.K.F.: Microarray with micro- and nano-topographies enables identification of the optimal topography for directing the differentiation of primary murine neural progenitor cells. Small 8(19), 3050–3061 (2012)CrossRefGoogle Scholar
  54. Onesto, V., Cosentino, C., Di Fabrizio, E., Cesarelli, M., Amato, F., Gentile, F.: Information in a network of neuronal cells: effect of cell density and short-term depression. BioMed Res. Int. ID 2769698, 1–12 (2016)CrossRefGoogle Scholar
  55. Onesto, V., Cancedda, L., Coluccio, M., Nanni, M., Pesce, M., Malara, N., Cesarelli, M., Fabrizio, E.D., Amato, F., Gentile, F.: Nano-topography enhances communication in neural cells networks. Sci. Rep. 7(9841), 1–13 (2017)Google Scholar
  56. Onesto, V., Narducci, R., Amato, F., Cancedda, L., Gentile, F.: The effect of connectivity on information in neural networks. Integr. Biol. 10(2), 121–127 (2018)CrossRefGoogle Scholar
  57. Qiu, T., Chu, P.K.: Self-selective electroless plating: an approach for fabrication of functional 1D nanomaterials. Mater. Sci. Eng. R 61, 59–77 (2008)CrossRefGoogle Scholar
  58. Racz, Z., Vicsek, T.: Diffusion controlled deposition: cluster statistics and scaling. Phys. Rev. Lett. 51(26), 2382–2385 (1983)CrossRefGoogle Scholar
  59. Sackmann, E., Smith, A.-S.: Physics of cell adhesion: some lessons from cell mimetic systems. Soft Matter 10, 1644–1659 (2014)CrossRefGoogle Scholar
  60. Saltzmann, M.: Drug Delivery. Oxford University Press, Oxford (2001)Google Scholar
  61. Schofield, S.R., Studer, P., Hirjibehedin, C.F., Curson, N.J., Aeppli, G., Bowler, D.R.: Quantum engineering at the silicon surface using dangling bonds. Nat. Commun. 4(1649), 1–7 (2013)Google Scholar
  62. Sorkin, R., Greenbaum, A., David-Pur, M., SaritAnava, A.A., Ben-Jacob, E., Hanein, Y.: Process entanglement as a neuronal anchorage mechanism to rough surfaces. Nanotechnology 20, 015101 (2009)CrossRefGoogle Scholar
  63. Stevens, M., George, J.: Exploring and engineering the cell surface interface. Science 310(5751), 1135–1138 (2005)CrossRefGoogle Scholar
  64. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)CrossRefGoogle Scholar
  65. Subramanian, A., Krishnan, U.M., Sethuraman, S.: Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J. Biomed. Sci. 16(1), 108–119 (2009)CrossRefGoogle Scholar
  66. Tang, M., Song, Q., Li, N., Jiang, Z., Huang, R., Cheng, G.: Enhancement of electrical signaling in neural networks on grapheme films. Biomaterials 34, 6402–6411 (2013)CrossRefGoogle Scholar
  67. Tao, A.R., Habas, S., Yang, P.: Shape control of colloidal metal nanocrystals. Small 4(3), 310–325 (2008)CrossRefGoogle Scholar
  68. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  69. Wozniak, M.A., Modzelewska, K., Kwong, L., Keely, P.J.: Focal adhesion regulation of cell behavior. Biochem. Biophys. Acta. 1692, 103–119 (2004)CrossRefGoogle Scholar
  70. Xie, C., Hanson, L., Xie, W., Lin, Z., Cui, B., Cui, Y.: Noninvasive neuron pinning with nanopillar arrays. Nano Lett. 10, 4020–4024 (2010)CrossRefGoogle Scholar
  71. Yae, S., Nasu, N., Matsumoto, K., Hagihara, T., Fukumuro, N., Matsuda, H.: Nucleation behavior in electroless displacement deposition of metals on silicon from hydrofluoric acid solutions. Electrochim. Acta 53(1), 35–41 (2007)CrossRefGoogle Scholar
  72. Yiu, H.H.P., Wright, P.A.: Enzymes supported on ordered mesoporous solids: a special case of an inorganic-organic hybrid. J. Mater. Chem. 15, 3690–3700 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Information TechnologyUniversity Federico IINaplesItaly

Personalised recommendations