Advertisement

Characterising Epithelial Tissues Using Persistent Entropy

  • N. Atienza
  • L. M. Escudero
  • M. J. Jimenez
  • M. Soriano-Trigueros
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11382)

Abstract

In this paper, we apply persistent entropy, a novel topological statistic, for characterization of images of epithelial tissues. We have found out that persistent entropy is able to summarize topological and geometric information encoded by \(\alpha \)-complexes and persistent homology. After using some statistical tests, we can guarantee the existence of significant differences in the studied tissues.

Keywords

Topological data analysis Persistent entropy Epithelial tissues 

References

  1. 1.
    Adams, H., et al.: Persistence images: a stable vector representation of persistent homology. J. Mach. Learn. Res. 18, 1–35 (2017)MathSciNetGoogle Scholar
  2. 2.
    Atienza, N., Gonzalez-Diaz, R., Soriano-Trigueros, M.: On the stability of persistent entropy and new summary functions for TDA (Preprint). https://arxiv.org/abs/1803.08304
  3. 3.
    Chintakunta, H., Gentimis, T., Gonzalez-Diaz, R., Jimenez, M.J., Krim, H.: An entropy-based persistence barcod. Pattern Recogn. 48(2), 391–401 (2015)CrossRefGoogle Scholar
  4. 4.
    Edelsbrunner H., Letscher D., Zomorodian A.: Topological persistence and simplification. In: FOCS 2000, pp. 454–463. IEEE Computer Society (2000)Google Scholar
  5. 5.
    Edelsbrunner, H., Harer, J.L.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010)zbMATHGoogle Scholar
  6. 6.
    Escudero, L.M., Costa, L.d.F., Kicheva, A., Briscoe, J., Freeman, M., Babu, M.M.: Epithelial organisation revealed by a network of cellular contacts. Nat. Commun. 2, 526 (2011)Google Scholar
  7. 7.
    Fasy, B.T., Kim, J., Lecci, F., Maria, C., Rouvreau, V., The included GUDHI is authored by Maria, C., Dionysus by Morozov, D., PHAT by Bauer, U., Kerber, M., Reininghaus, J.: TDA: Statistical Tools for Topological Data Analysis. R Package Version 1.6 (2017). https://CRAN.R-project.org/package=TDA
  8. 8.
    Farhadifar, R., Roper, J.C., Aigouy, B., Eaton, S., Julicher, F.: The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr. Biol. 17(24), 2095–2104 (2007)CrossRefGoogle Scholar
  9. 9.
    Ferri, M.: Progress in persistence for shape analysis (extended abstract). In: Bac, A., Mari, J.-L. (eds.) CTIC 2016. LNCS, vol. 9667, pp. 3–6. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39441-1_1CrossRefGoogle Scholar
  10. 10.
    Gibson, M.C., Patel, A.B., Nagpal, R., Perrimon, N.: The emergence of geometric order in proliferating metazoan epithelia. Nature 442(7106), 1038–1041 (2006)CrossRefGoogle Scholar
  11. 11.
    Jimenez, M.J., Rucco, M., Vicente-Munuera, P., Gómez-Gálvez, P., Escudero, L.M.: Topological data analysis for self-organization of biological tissues. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 229–242. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59108-7_18CrossRefGoogle Scholar
  12. 12.
    Mazo, C., Trujillo, M., Salazar, L.: Automatic classification of coating epithelial tissue. In: Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 311–318. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12568-8_38CrossRefGoogle Scholar
  13. 13.
    Sánchez-Gutiérrez, D., Tozluoglu, M., Barry, J.D., Pascual, A., Mao, Y., Escudero, L.M.: Fundamental physical cellular constraints drive self-organization of tissues. The EMBO J. 35(1), 77–88 (2016)CrossRefGoogle Scholar
  14. 14.
    Shraiman, B.I.: Mechanical feedback as a possible regulator of tissue growth. Proc. Natl. Acad. Sci. USA 102(9), 3318–3323 (2005)CrossRefGoogle Scholar
  15. 15.
    Vicente-Munuera, P., Gomez-Galvez, P., Tagua, A., Letran, M., Mao, Y., Escudero, L.M.: EpiGraph: an open-source platform to quantify epithelial organization. BioRxiv:217521,  https://doi.org/10.1101/217521
  16. 16.
    Zomorodian, A., Carlsson, G.: Computing persistent homology. Discret. Comput. Geom. 33(2), 249–274 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • N. Atienza
    • 1
  • L. M. Escudero
    • 2
    • 3
  • M. J. Jimenez
    • 1
  • M. Soriano-Trigueros
    • 1
  1. 1.Departamento Matematica Aplicada IUniversidad de SevillaSevillaSpain
  2. 2.Departamento de Biología CelularUniversidad de SevillaSevillaSpain
  3. 3.Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio, CSICUniversidad de SevillaSevillaSpain

Personalised recommendations