Advertisement

Quasi-Modes and Spectral Instability in One Dimension

  • Johannes Sjöstrand
Chapter
Part of the Pseudo-Differential Operators book series (PDO, volume 14)

Abstract

In this section we describe the general WKB construction of approximate “asymptotic” solutions to the ordinary differential equation
$$\displaystyle P(x,hD_x)u=\sum _{k=0}^m b_k(x)(hD_x)^ku=0, $$
on an interval α < x < β, where we assume that the coefficients bk ∈ C(]α, β[). Here h ∈ ]0, h0] is a small parameter and we wish to solve (above equation) up to any power of h. We look for u in the form
$$\displaystyle u(x;h)=a(x;h)e^{i\phi (x)/h}, $$
where ϕ ∈ C(]α, β[) is independent of h. The exponential factor describes the oscillations of u, and when ϕ is complex valued it also describes the exponential growth or decay; a(x;h) is the amplitude and should be of the form
$$\displaystyle a(x;h)\sim \sum _{\nu =0}^\infty a_\nu (x)h^\nu \mbox{ in }C^\infty (]\alpha ,\beta [). $$

References

  1. 33.
    E.B. Davies, Semi-classical states for non-self-adjoint Schrödinger operators. Commun. Math. Phys. 200(1), 35–41 (1999)CrossRefGoogle Scholar
  2. 34.
    E.B. Davies, Pseudospectra, the harmonic oscillator and complex resonances. Proc. Roy. Soc. Lond. A 455, 585–599 (1999)CrossRefGoogle Scholar
  3. 39.
    E.B. Davies, A.B.J. Kuijlaars, Spectral asymptotics of the non-self-adjoint harmonic oscillator. J. Lond. Math. Soc. (2) 70, 420–426 (2004)MathSciNetCrossRefGoogle Scholar
  4. 40.
    N. Dencker, J. Sjöstrand, M. Zworski, Pseudospectra of semiclassical (pseudo-)differential operators, Commun. Pure Appl. Math. 57(3), 384–415 (2004)MathSciNetCrossRefGoogle Scholar
  5. 41.
    M. Dimassi, J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit. London Mathematical Society Lecture Note Series, vol. 268 (Cambridge University Press, Cambridge, 1999)Google Scholar
  6. 63.
    R. Henry, Spectral projections of the complex cubic oscillator. Ann. Henri Poincaré 15(10), 2025–2043 (2014)MathSciNetCrossRefGoogle Scholar
  7. 64.
    R. Henry, Instability for even non-selfadjoint anharmonic oscillators. J. Spectr. Theory 4(2), 349–364 (2014)MathSciNetCrossRefGoogle Scholar
  8. 78.
    L. Hörmander, Differential equations without solutions. Math. Ann. 140, 169–173 (1960)MathSciNetCrossRefGoogle Scholar
  9. 79.
    L. Hörmander, Differential operators of principal type. Math. Ann. 140, 124–146 (1960)MathSciNetCrossRefGoogle Scholar
  10. 132.
    J. Sjöstrand, Singularités analytiques microlocales. Astérisque 95 (Société Mathématique de France, Paris, 1982), pp. 1–166Google Scholar
  11. 161.
    M. Zworski, A remark on a paper of E. B. Davies: “Semi-classical states for non-self-adjoint Schrödinger operators”. Proc. Am. Math. Soc. 129(10), 2955–2957 (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Johannes Sjöstrand
    • 1
  1. 1.Université de Bourgogne Franche-ComtéDijonFrance

Personalised recommendations