Advertisement

Spectral Asymptotics for \(\mathcal {P}\mathcal {T}\) Symmetric Operators

  • Johannes Sjöstrand
Chapter
Part of the Pseudo-Differential Operators book series (PDO, volume 14)

Abstract

\(\mathcal {P}\mathcal {T}\)-symmetry has been proposed as an alternative to self-adjointness in quantum physics, see Bender et al. (J Math Phys 40(5):2201–2229, 1999), Bender and Mannheim (Phys Lett A 374(15–16):1616–1620, 2010). Thus for instance, if we consider a Schrödinger operator on Rn,
$$\displaystyle P=-h^2\Delta +V(x), $$
the usual assumption of self-adjointness (implying that the potential V is real valued) can be replaced by that of \(\mathcal {P}\mathcal {T}\)-symmetry:
$$\displaystyle V\circ \iota =\overline {V}, $$
where ι : Rn →Rn is an isometry with ι2 = 1≠ι. If we introduce the parity operator \(\mathcal {P}_\iota u(x)=u(\iota (x))\) and the time reversal operator \(\mathcal {T} u=\overline {u}\), then this can be written
$$\displaystyle [P,\mathcal {P}_\iota \mathcal {T} ]=0. $$

References

  1. 3.
    S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operators. Mathematical Notes, vol. 29 (Princeton University Press/University of Tokyo Press, Princeton/Tokyo, 1982)Google Scholar
  2. 12.
    A. Benbernou, N. Boussekkine, N. Mecherout, T. Ramond, J. Sjöstrand, Non-real eigenvalues for \(\mathcal {P}\mathcal {T}\)-symmetric double wells. Lett. Math. Phys. 106(12), 1817–1835 (2016). http://arxiv.org/abs/1506.01898
  3. 13.
    C.M. Bender, S. Boettcher, P.N. Meisinger, \(\mathcal {P}\mathcal {T}\)-symmetric quantum mechanics. J. Math. Phys. 40(5), 2201–2229 (1999)Google Scholar
  4. 14.
    C.M. Bender, P.D. Mannheim, \(\mathcal {P}\mathcal {T}\) symmetry and necessary and sufficient conditions for the reality of energy eigenvalues. Phys. Lett. A 374(15–16), 1616–1620 (2010)MathSciNetCrossRefGoogle Scholar
  5. 19.
    W. Bordeaux Montrieux, J. Sjöstrand, Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds. Ann. Fac. Sci. Toulouse 19(3–4), 567–587 (2010). http://arxiv.org/abs/0903.2937 MathSciNetCrossRefGoogle Scholar
  6. 23.
    N. Boussekkine, N. Mecherout, \(\mathcal {P}\mathcal {T}\) -symmetry and Schrödinger operators – the simple well case. Math. Nachr. 289(1), 13–27 (2016), French version at http://arxiv.org/pdf/1310.7335
  7. 26.
    E. Caliceti, S. Graffi, J. Sjöstrand, Spectra of \(\mathcal {P}\mathcal {T}\)-symmetric operators and perturbation theory. J. Phys. A: Math. Gen. 38(1), 185–193 (2005)Google Scholar
  8. 27.
    E. Caliceti, S. Graffi, J. Sjöstrand, \(\mathcal {P}\mathcal {T}\) symmetric non-selfadjoint operators, diagonalizable and non-diagonalizable, with real discrete spectrum. J. Phys. A: Math. Theor. 40(33), 10155–10170 (2007)MathSciNetCrossRefGoogle Scholar
  9. 41.
    M. Dimassi, J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit. London Mathematical Society Lecture Note Series, vol. 268 (Cambridge University Press, Cambridge, 1999)Google Scholar
  10. 48.
    I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Non-selfadjoint Operators. Translations of Mathematical Monographs, vol. 18 (AMS, Providence, 1969)Google Scholar
  11. 59.
    B. Helffer, J. Sjöstrand, Multiple wells in the semiclassical limit. I. Commun. Partial Differ. Equ. 9(4), 337–408 (1984)MathSciNetCrossRefGoogle Scholar
  12. 95.
    L. Lithner, A theorem of the Phragmén-Lindelöf type for second-order elliptic operators. Ark. Mat. 5, 281–285 (1964)MathSciNetCrossRefGoogle Scholar
  13. 101.
    N. Mecherout, N. Boussekkine, T. Ramond, J. Sjöstrand, \(\mathcal {P}\mathcal {T}\) -symmetry and Schrödinger operators. The double well case. Math. Nachr. 289(7), 854–887 (2016). http://arxiv.org/abs/1502.06102
  14. 120.
    O. Rouby, Bohr-Sommerfeld quantization conditions for non-selfadjoint perturbations of selfadjoint operators in dimension one. Int. Math. Res. Not. IMRN 2018(7), 2156–2207 (2018). http://arxiv.org/abs/1511.06237 MathSciNetzbMATHGoogle Scholar
  15. 126.
    K.C. Shin, On the reality of the eigenvalues for a class of \(\mathcal {P}\mathcal {T}\)-symmetric oscillators. Commun. Math. Phys. 229(3), 543–564 (2002)Google Scholar
  16. 130.
    B. Simon, Semiclassical analysis of low lying eigenvalues. II. Tunneling. Ann. Math. (2) 120(1), 89–118 (1984)MathSciNetCrossRefGoogle Scholar
  17. 133.
    J. Sjöstrand, Puits multiples, (d’après des travaux avec B. Helffer), Sém. Goulaouic-Meyer-Schwartz, 1983–1984, Exposé No. 7, École Polytech., Palaiseau, 1984. http://www.numdam.org/item?id=SEDP_1983-1984____A7_0
  18. 137.
    J. Sjöstrand, Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations. Ann. Fac. Sci. Toulouse 18(4), 739–795 (2009). http://arxiv.org/abs/0802.3584 MathSciNetCrossRefGoogle Scholar
  19. 143.
    J. Sjöstrand, PT Symmetry and Weyl Asymptotics. The Mathematical Legacy of Leon Ehrenpreis, Springer Proceedings in Mathematics, vol. 16, pp. 299–308 (2012). http://arxiv.org/abs/1105.4746 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Johannes Sjöstrand
    • 1
  1. 1.Université de Bourgogne Franche-ComtéDijonFrance

Personalised recommendations