Advertisement

Resolvent Estimates Near the Boundary of the Range of the Symbol

  • Johannes Sjöstrand
Chapter
Part of the Pseudo-Differential Operators book series (PDO, volume 14)

Abstract

In this chapter, which closely follows, we study bounds on the resolvent of a non-self-adjoint h-pseudodifferential operator P with (semi-classical) principal symbol p when h → 0, when the spectral parameter is in a neighborhood of certain points on the boundary of the range of p. In Chap.  6 we have already described a very precise result of W. Bordeaux Montrieux in dimension 1. Here we consider a more general situation; the dimension can be arbitrary and we allow for more degenerate behaviour. The results will not be quite as precise as in the one-dimensional case.

References

  1. 11.
    B. Bellis, Subelliptic resolvent estimates for non-self-adjoint semiclassical Schrödinger operators. J. Spectral Theory 9(1), 171–194 (2019). https://arxiv.org/abs/1609.00436 MathSciNetCrossRefGoogle Scholar
  2. 16.
    W. Bordeaux Montrieux, Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints, thèse, CMLS, Ecole Polytechnique, 2008. https://pastel.archives-ouvertes.fr/pastel-00005367
  3. 22.
    L.S. Boulton, Non-self-adjoint harmonic oscillator, compact semigroups and pseudospectra. J. Operator Theory 47(2), 413–429 (2002)MathSciNetzbMATHGoogle Scholar
  4. 34.
    E.B. Davies, Pseudospectra, the harmonic oscillator and complex resonances. Proc. Roy. Soc. Lond. A 455, 585–599 (1999)CrossRefGoogle Scholar
  5. 40.
    N. Dencker, J. Sjöstrand, M. Zworski, Pseudospectra of semiclassical (pseudo-)differential operators, Commun. Pure Appl. Math. 57(3), 384–415 (2004)MathSciNetCrossRefGoogle Scholar
  6. 41.
    M. Dimassi, J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit. London Mathematical Society Lecture Note Series, vol. 268 (Cambridge University Press, Cambridge, 1999)Google Scholar
  7. 60.
    B. Helffer, J. Sjöstrand, Résonances en limite semi-classique. Mém. Soc. Math. France (N.S.), vol. 24–25 (Gauthier-Villars, Paris, 1986), pp. 1–228CrossRefGoogle Scholar
  8. 68.
    M. Hitrik, L. Pravda-Starov, Spectra and semigroup smoothing for non-elliptic quadratic operators. Math. Ann. 344(4), 801–846 (2009)MathSciNetCrossRefGoogle Scholar
  9. 70.
    M. Hitrik, K. Pravda-Starov, Eigenvalues and subelliptic estimates for non-selfadjoint semiclassical operators with double characteristics. Ann. Inst. Fourier (Grenoble) 63(3), 985–1032 (2013)MathSciNetCrossRefGoogle Scholar
  10. 76.
    M. Hitrik, K. Pravda-Starov, J. Viola, Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators. Bull. Sci. Math. 141(7), 615–675 (2017). https://arxiv.org/abs/1510.01992 MathSciNetCrossRefGoogle Scholar
  11. 77.
    M. Hitrik, K. Pravda-Starov, J. Viola, From semigroups to subelliptic estimates for quadratic operators. Trans. Am. Math. Soc. 370(10), 7391–7415 (2018). https://arxiv.org/abs/1510.02072 MathSciNetCrossRefGoogle Scholar
  12. 83.
    L. Hörmander, The Analysis of Linear Partial Differential Operators. I–IV, Grundlehren der Mathematischen Wissenschaften, vols. 256, 257, 274, 275 (Springer, Berlin, 1983/1985)Google Scholar
  13. 89.
    V.V. Kučerenko, Asymptotic solutions of equations with complex characteristics (Russian). Mat. Sb. (N.S.) 95(137), 163–213, 327 (1974)Google Scholar
  14. 91.
    B. Lascar, J. Sjöstrand, Equation de Schrödinger et propagation des singularités pour des opérateurs pseudodifférentiels à caractéristiques réelles de multiplicité variable I. Astérisque 95, 467–523 (1982)zbMATHGoogle Scholar
  15. 99.
    V.P. Maslov, Operational Methods. Translated from the Russian by V. Golo, N. Kulman, G. Voropaeva (Mir Publishers, Moscow, 1976)Google Scholar
  16. 100.
    O. Matte, Correlation asymptotics for non-translation invariant lattice spin systems. Math. Nachr. 281(5), 721–759 (2008)MathSciNetCrossRefGoogle Scholar
  17. 103.
    A. Melin, J. Sjöstrand, Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem. Commun. Partial Differ. Equ. 1(4), 313–400 (1976)MathSciNetCrossRefGoogle Scholar
  18. 104.
    A. Melin, J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space. Methods Appl. Anal. 9(2), 177–238 (2002). https://arxiv.org/abs/math/0111292 MathSciNetzbMATHGoogle Scholar
  19. 106.
    A. Menikoff, J. Sjöstrand, On the eigenvalues of a class of hypo-elliptic operators. Math. Ann. 235, 55–85 (1978)MathSciNetCrossRefGoogle Scholar
  20. 121.
    O. Rouby, S. Vũ Ngọc, J. Sjöstrand, Analytic Bergman operators in the semiclassical limit (2018). https://arxiv.org/abs/1808.00199
  21. 132.
    J. Sjöstrand, Singularités analytiques microlocales. Astérisque 95 (Société Mathématique de France, Paris, 1982), pp. 1–166Google Scholar
  22. 137.
    J. Sjöstrand, Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations. Ann. Fac. Sci. Toulouse 18(4), 739–795 (2009). http://arxiv.org/abs/0802.3584 MathSciNetCrossRefGoogle Scholar
  23. 140.
    J. Sjöstrand, Resolvent Estimates for Non-self-adjoint Operators via Semi-groups. International Mathematical Series, vol. 13, pp. 359–384 Around the research of Vladimir Maz’ya, III (Springer/Tamara Rozhkovskaya Publisher, Novosibirsk, 2010). http://arxiv.org/abs/0906.0094 Google Scholar
  24. 153.
    J. Viola, Spectral projections and resolvent bounds for partially elliptic quadratic differential operators. J. Pseudo-Differ. Oper. Appl. 4, 145–221 (2013)MathSciNetCrossRefGoogle Scholar
  25. 154.
    J. Viola, The norm of the non-self-adjoint harmonic oscillator semigroup. Integr. Equ. Oper. Theory 85(4), 513–538 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Johannes Sjöstrand
    • 1
  1. 1.Université de Bourgogne Franche-ComtéDijonFrance

Personalised recommendations