Advertisement

Behavioral Strengths and Weaknesses of Various Models of Limited Automata

  • Tomoyuki Yamakami
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11376)

Abstract

We examine the behaviors of various models of k-limited automata, which naturally extend Hibbard’s [Inf. Control, vol. 11, pp. 196–238, 1967] scan limited automata, each of which is a linear-bounded automaton satisfying the k-limitedness requirement that the content of each tape cell should be modified only during the first k visits of a tape head. One central model is k-limited probabilistic automaton (k-lpa), which accepts an input exactly when its accepting states are reachable from its initial state with probability more than 1/2. We further study the behaviors of one-sided-error and bounded-error variants of such k-lpa’s as well as deterministic and nondeterministic models. We discuss fundamental properties of those machine models and obtain inclusions and separations among language families induced by these machine models. In due course, we study special features—the blank skipping property and the closure under reversal—which are keys to the robustness of k-lpa’s.

Keywords

Limited automata Pushdown automata Probabilistic computation Bounded-error probability One-sided error Blank skipping property Reversal 

References

  1. 1.
    Dwork, C., Stockmeyer, L.: Finite verifiers I: the power of interaction. J. ACM 39, 800–828 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Freivalds, R.: Probabilistic two-way machines. In: Gruska, J., Chytil, M. (eds.) MFCS 1981. LNCS, vol. 118, pp. 33–45. Springer, Heidelberg (1981).  https://doi.org/10.1007/3-540-10856-4_72CrossRefGoogle Scholar
  3. 3.
    Hibbard, T.N.: A generalization of context-free determinism. Inf. Control 11, 196–238 (1967)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Boston (1979)zbMATHGoogle Scholar
  5. 5.
    Hromkovič, J., Schnitger, G.: On probabilistic pushdown automata. Inf. Comput. 208, 982–995 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kaņeps, J., Freivalds, R.: Minimal nontrivial space complexity of probabilistic one-way turing machines. In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452, pp. 355–361. Springer, Heidelberg (1990).  https://doi.org/10.1007/BFb0029629CrossRefGoogle Scholar
  7. 7.
    Kaņeps, J., Geidmanis, D., Freivalds, R.: Tally languages accepted by Monte Carlo pushdown automata. In: Rolim, J. (ed.) RANDOM 1997. LNCS, vol. 1269, pp. 187–195. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-63248-4_16CrossRefGoogle Scholar
  8. 8.
    Liu, L.Y., Weiner, P.: An infinite hierarchy of intersections of context-free languages. Math. Syst. Theory 7, 185–192 (1973)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Macarie, I.I., Ogihara, M.: Properties of probabilistic pushdown automata. Theor. Comput. Sci. 207, 117–130 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found. Comput. Sci. 25, 897–916 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Fund. Inform. 136, 157–176 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Wagner, K., Wechsung, G.: Computational Complexity. D. Reidel Publishing, Dordrecht (1986)zbMATHGoogle Scholar
  13. 13.
    Wang, J.: A note on two-way probabilistic automata. Inf. Process. Lett. 43, 321–326 (1992)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yamakami, T.: Oracle pushdown automata, nondeterministic reducibilities, and the hierarchy over the family of context-free languages. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 514–525. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04298-5_45CrossRefzbMATHGoogle Scholar
  15. 15.
    Yamakami, T.: Structural complexity of multi-valued partial functions computed by nondeterministic pushdown automata. In: Proceedings of ICTCS 2014, CEUR Workshop Proceedings, vol. 1231, pp. 225–236 (2014)Google Scholar
  16. 16.
    Yamakami, T.: Not all multi-valued partial CFL functions are refined by single-valued functions (extended abstract). In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 136–150. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44602-7_12CrossRefGoogle Scholar
  17. 17.
    Yamakami, T.: One-way bounded-error probabilistic pushdown automata and kolmogorov complexity (preliminary report). In: Charlier, É., Leroy, J., Rigo, M. (eds.) DLT 2017. LNCS, vol. 10396, pp. 353–364. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62809-7_27CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity of FukuiFukuiJapan

Personalised recommendations