Advertisement

Enumerating Connected Induced Subgraphs: Improved Delay and Experimental Comparison

  • Christian Komusiewicz
  • Frank SommerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11376)

Abstract

We consider the problem of enumerating all connected induced subgraphs of order k in an undirected graph \(G=(V,E)\). Our main results are two enumeration algorithms with a delay of \(\mathcal {O}(k^2\varDelta )\) where \(\varDelta \) is the maximum degree in the input graph. This improves upon a previous delay bound [Elbassioni, JGAA 2015] for this problem. In addition, we give improved worst-case running time bounds and delay bounds for several known algorithms and perform an experimental comparison of these algorithms for \(k\le 10\) and \(k\ge |V|-3\).

References

  1. 1.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Discret. Appl. Math. 65(1–3), 21–46 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bader, D.A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., Wagner, D.: Benchmarking for graph clustering and partitioning. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network Analysis and Mining, pp. 73–82. Springer, New York (2014).  https://doi.org/10.1007/978-1-4614-6170-8_23CrossRefGoogle Scholar
  3. 3.
    Bollobás, B.: The Art of Mathematics - Coffee Time in Memphis. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  4. 4.
    Elbassioni, K.M.: A polynomial delay algorithm for generating connected induced subgraphs of a given cardinality. J. Graph Algorithms Appl. 19(1), 273–280 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Elbassuoni, S., Blanco, R.: Keyword search over RDF graphs. In: Proceedings of the 20th ACM Conference on Information and Knowledge Management, (CIKM 2011), pp. 237–242. ACM (2011)Google Scholar
  6. 6.
    Kashani, Z.R.M., et al.: Kavosh: a new algorithm for finding network motifs. BMC Bioinform. 10, 318 (2009)CrossRefGoogle Scholar
  7. 7.
    Komusiewicz, C., Sorge, M.: Finding dense subgraphs of sparse graphs. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 242–251. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33293-7_23CrossRefGoogle Scholar
  8. 8.
    Komusiewicz, C., Sorge, M.: An algorithmic framework for fixed-cardinality optimization in sparse graphs applied to dense subgraph problems. Discret. Appl. Math. 193, 145–161 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Komusiewicz, C., Sorge, M., Stahl, K.: Finding connected subgraphs of fixed minimum density: implementation and experiments. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 82–93. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20086-6_7CrossRefGoogle Scholar
  10. 10.
    Kunegis, J.: KONECT: the Koblenz network collection. In: Proceedings of the 22nd International World Wide Web Conference (WWW 2013), pp. 1343–1350. International World Wide Web Conferences Steering Committee/ACM (2013)Google Scholar
  11. 11.
    Maxwell, S., Chance, M.R., Koyutürk, M.: Efficiently enumerating all connected induced subgraphs of a large molecular network. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) AlCoB 2014. LNCS, vol. 8542, pp. 171–182. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07953-0_14CrossRefGoogle Scholar
  12. 12.
    Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015), pp. 4292–4293. AAAI Press (2015). http://networkrepository.com
  13. 13.
    Wernicke, S.: A faster algorithm for detecting network motifs. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS, vol. 3692, pp. 165–177. Springer, Heidelberg (2005).  https://doi.org/10.1007/11557067_14CrossRefGoogle Scholar
  14. 14.
    Wernicke, S.: Combinatorial algorithms to cope with the complexity of biological networks. Ph.D. thesis, Friedrich Schiller University of Jena (2006). http://d-nb.info/982598882

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fachbereich Mathematik und InformatikPhilipps-Universität MarburgMarburgGermany

Personalised recommendations