Advertisement

Patrolling on Dynamic Ring Networks

  • Shantanu DasEmail author
  • Giuseppe A. Di Luna
  • Leszek A. Gasieniec
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11376)

Abstract

We study the problem of patrolling the nodes of a network collaboratively by a team of mobile agents, such that each node of the network is visited by at least one agent once in every I(n) time units, with the objective of minimizing the idle time I(n). While patrolling has been studied previously for static networks, we investigate the problem on dynamic networks with a fixed set of nodes, but dynamic edges. In particular, we consider 1-interval-connected ring networks and provide various patrolling algorithms for such networks, for \(k=2\) or \(k>2\) agents. We also show almost matching lower bounds that hold even for the best starting configurations. Thus, our algorithms achieve close to optimal idle time. Further, we show a clear separation in terms of idle time, for agents that have prior knowledge of the dynamic networks compared to agents that do not have such knowledge. This paper provides the first known results for collaborative patrolling on dynamic graphs.

References

  1. 1.
    Aaron, E., Krizanc, D., Meyerson, E.: DMVP: foremost waypoint coverage of time-varying graphs. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 29–41. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12340-0_3CrossRefGoogle Scholar
  2. 2.
    Aaron, E., Krizanc, D., Meyerson, E.: Multi-robot foremost coverage of time-varying graphs. In: Gao, J., Efrat, A., Fekete, S.P., Zhang, Y. (eds.) ALGOSENSORS 2014. LNCS, vol. 8847, pp. 22–38. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46018-4_2CrossRefGoogle Scholar
  3. 3.
    Augustine, J., Pandurangan, G., Robinson, P.: Fast byzantine agreement in dynamic networks. In: Proceedings of the 32nd Symposium on Principles of Distributed Computing, PODC, pp. 74–83 (2013)Google Scholar
  4. 4.
    Awerbuch, B., Even, S.: Efficient and reliable broadcast is achievable in an eventually connected network. In: Proceedings of the 3rd Symposium on Principles of Distributed Computing, PODC, pp. 278–281 (1984)Google Scholar
  5. 5.
    Biely, M., Robinson, P., Schmid, U.: Agreement in directed dynamic networks. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 73–84. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31104-8_7CrossRefGoogle Scholar
  6. 6.
    Bournat, M., Datta, A.K., Dubois, S.: Self-stabilizing robots in highly dynamic environments. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 54–69. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49259-9_5CrossRefGoogle Scholar
  7. 7.
    Carlsson, S., Jonsson, H., Nilsson, B.J.: Finding the shortest watchman route in a simple polygon. Discrete Comput. Geom. 22(3), 377–402 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)CrossRefGoogle Scholar
  9. 9.
    Chan, M.Y., Chin, F.Y.L.: Schedulers for larger classes of pinwheel instances. Algorithmica 9(5), 425–462 (1993)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chin, W., Ntafos, S.C.: Optimum watchman routes. Inf. Process. Lett. 28(1), 39–44 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Clementi, A., Monti, A., Pasquale, F., Silvestri, R.: Information spreading in stationary markovian evolving graphs. IEEE Trans. Parallel Distrib. Syst. 22(9), 1425–1432 (2011)CrossRefGoogle Scholar
  12. 12.
    Collins, A., et al.: Optimal patrolling of fragmented boundaries. In: 25th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2013, Montreal, pp. 241–250 (2013)Google Scholar
  13. 13.
    Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23719-5_59CrossRefGoogle Scholar
  14. 14.
    Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.: When patrolmen become corrupted: monitoring a graph using faulty mobile robots. Algorithmica 79(3), 925–940 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Di Luna, G.A., Baldoni, R.: Brief announcement: investigating the cost of anonymity on dynamic networks. In: Proceedings of the 34th Symposium on Principles of Distributed Computing, PODC, pp. 339–341 (2015)Google Scholar
  16. 16.
    Di Luna, G.A., Dobrev, S., Flocchini, P., Santoro, N.: Live exploration of dynamic rings. In: Proceedings of the 36th IEEE International Conference on Distributed Computing Systems, ICDCS, pp. 570–579 (2016)Google Scholar
  17. 17.
    Di Luna, G.A., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta, G.: Gathering in dynamic rings. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 339–355. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72050-0_20CrossRefGoogle Scholar
  18. 18.
    Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 444–455. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47672-7_36CrossRefGoogle Scholar
  19. 19.
    Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theoret. Comput. Sci. 469, 53–68 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gąsieniec, L., Klasing, R., Levcopoulos, C., Lingas, A., Min, J., Radzik, T.: Bamboo garden trimming problem (perpetual maintenance of machines with different attendance urgency factors). In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 229–240. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-51963-0_18CrossRefzbMATHGoogle Scholar
  21. 21.
    Harary, F., Gupta, G.: Dynamic graph models. Math. Comput. Model. 25(7), 79–88 (1997)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of constantly connected dynamic graphs based on cactuses. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 250–262. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09620-9_20CrossRefGoogle Scholar
  23. 23.
    Ilcinkas, D., Wade, A.M.: On the power of waiting when exploring public transportation systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 451–464. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25873-2_31CrossRefGoogle Scholar
  24. 24.
    Ilcinkas, D., Wade, A.M.: Exploration of the T-interval-connected dynamic graphs: the case of the ring. Theory Comput. Syst. 62(5), 1144–1160 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct speeds. Distrib. Comput. 28(2), 147–154 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kowalski, D., Miguel, A.M.: Polynomial counting in anonymous dynamic networks with applications to anonymous dynamic algebraic computations. In: Proceedings of the 45th International Colloquium on Automata, Languages, and Programming, ICALP (2018, to appear)Google Scholar
  27. 27.
    Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of the 42nd Symposium on Theory of Computing, STOC, pp. 513–522 (2010)Google Scholar
  28. 28.
    Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks. In: Proceedings of the 30th Symposium on Principles of Distributed Computing, PODC, pp. 1–10 (2011)Google Scholar
  29. 29.
    Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT News 42(1), 82–96 (2011)CrossRefGoogle Scholar
  30. 30.
    Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Internet Math. 12(4), 239–280 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. Theoret. Comput. Sci. 634, 1–23 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ntafos, S.C.: On gallery watchmen in grids. Inf. Process. Lett. 23(2), 99–102 (1986)MathSciNetCrossRefGoogle Scholar
  33. 33.
    O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs. In: Proceedings of the Joint Workshop on Foundations of Mobile Computing, DIALM-POMC, pp. 104–110 (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shantanu Das
    • 1
    Email author
  • Giuseppe A. Di Luna
    • 1
  • Leszek A. Gasieniec
    • 2
  1. 1.Aix-Marseille University, CNRS, LISMarseilleFrance
  2. 2.University of LiverpoolLiverpoolUK

Personalised recommendations