Advertisement

From the Near- to the Mid-Infrared

  • Marcus SeidelEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The previous chapters of this dissertation have demonstrated the progress in the development of KLM TD oscillators towards waveform control and few-cycle operation. So-far all research was concentrated on the optical octave from about 700–1400 nm.

References

  1. 1.
    Brons, J., et al. (2014). Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Optics Letters, 39, 6442–6445.  https://doi.org/10.1364/OL.39.006442.ADSCrossRefGoogle Scholar
  2. 2.
    Saraceno, C. J., et al. (2012). 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment. Optic Express, 20, 23535–23541.  https://doi.org/10.1364/OE.20.023535.ADSCrossRefGoogle Scholar
  3. 3.
    Russbueldt, P., et al. (2015). Innoslab amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 21, 447–463.  https://doi.org/10.1109/JSTQE.2014.2333234.ADSCrossRefGoogle Scholar
  4. 4.
    Müller, M., et al. (2016). 1 kW 1 mJ eight-channel ultrafast fiber laser. Optics Letter, 41, 3439–3442.  https://doi.org/10.1364/OL.41.003439.ADSCrossRefGoogle Scholar
  5. 5.
    Zhang, J. Multi-m W, et al. (2018). few-cycle mid-infrared continuum spanning from 500 to 2250 cm\(^{-1}\). Light: Science & Applications e17180,.  https://doi.org/10.1038/lsa.2017.180.CrossRefGoogle Scholar
  6. 6.
    Stutzki, F., et al. (2014). 152 W average power Tm-doped fiber CPA system. Optics Letter, 39, 4671–4674.ADSCrossRefGoogle Scholar
  7. 7.
    Vasilyev, S., Moskalev, I., Mirov, M., Mirov, S., & Gapontsev, V. (2016). Multi-watt mid-ir femtosecond polycrystalline Cr\(^{ 2+}\): Zns and Cr\(^{ 2+}\): Znse laser amplifiers with the spectrum spanning 2.0 \(mu \)m - 2.6 \(mu \)m. Optics Express, 24, 1616–1623.  https://doi.org/10.1364/OE.24.001616.ADSCrossRefGoogle Scholar
  8. 8.
    Antipov, S., Hudson, D. D., Fuerbach, A., & Jackson, S. D. (2016). High-power mid-infrared femtosecond fiber laser in the water vapor transmission window. Optica, 3, 1373–1376.  https://doi.org/10.1364/OPTICA.3.001373.CrossRefGoogle Scholar
  9. 9.
    Haas, J., & Mizaikoff, B. (2016). Advances in Mid-Infrared Spectroscopy for Chemical Analysis. Annual Review of Analytical Chemistry, 9, 45–68.  https://doi.org/10.1146/annurev-anchem-071015-041507.ADSCrossRefGoogle Scholar
  10. 10.
    Cossel, K. C., et al. (2017). Gas-phase broadband spectroscopy using active sources: progress, status, and applications (invited). Journal of the Optical Society of America B, 34, 104–129.  https://doi.org/10.1364/JOSAB.34.000104.CrossRefGoogle Scholar
  11. 11.
    Baker, M. J., et al. (2014). Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols, 9, 1771–91.  https://doi.org/10.1038/nprot.2014.110.CrossRefGoogle Scholar
  12. 12.
    Schliesser, A., Picque, N., & Hänsch, T. W. (2012). Mid-infrared frequency combs. Nature Photonics, 6, 440–449.  https://doi.org/10.1038/nphoton.2012.142.ADSCrossRefGoogle Scholar
  13. 13.
    Zhu, J., Mathes, T., Stahl, A. D., Kennis, J. T., & Groot, M. L. (2012). Ultrafast mid-infrared spectroscopy by chirped pulse upconversion in 1800–1000cm\(^{-1}\) region. Optics Express, 20, 10562–10571.  https://doi.org/10.1364/OE.20.010562.ADSCrossRefGoogle Scholar
  14. 14.
    Tidemand-Lichtenberg, P., Dam, J. S., Andersen, H. V., Høgstedt, L., & Pedersen, C. (2016). Mid-infrared upconversion spectroscopy. Journal of the Optical Society of America B, 33, D28–D35.  https://doi.org/10.1364/JOSAB.33.000D28.CrossRefGoogle Scholar
  15. 15.
    Hamm, P., & Zanni, M. (2011). Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, Cambridge. UK,.  https://doi.org/10.1017/CBO9780511675935.
  16. 16.
    Lee, K. F., Kubarych, K. J., Bonvalet, A., & Joffre, M. (2008). Characterization of mid-infrared femtosecond pulses (invited). Journal of the Optical Society of America B, 25, A54–A62.  https://doi.org/10.1364/JOSAB.25.000A54.ADSCrossRefGoogle Scholar
  17. 17.
    Lanin, A. A., Voronin, A. A., Fedotov, A. B., & Zheltikov, A. M. (2014). Time-domain spectroscopy in the mid-infrared. Scientific Reports, 4, 6670.  https://doi.org/10.1038/srep06670.ADSCrossRefGoogle Scholar
  18. 18.
    Popmintchev, T., et al. (2012). Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science, 336, 1287–1291.  https://doi.org/10.1126/science.1218497.ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Schubert, O., et al. (2014). Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photonics, 8, 119–123.  https://doi.org/10.1038/nphoton.2013.349.ADSCrossRefGoogle Scholar
  20. 20.
    Hohenleutner, M., et al. (2015). Real-time observation of interfering crystal electrons in high-harmonic generation. Nature, 523, 572–5.  https://doi.org/10.1038/nature14652.ADSCrossRefGoogle Scholar
  21. 21.
    Pupeza, I., et al. (2015). High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nature Photonics, 9, 721–724.  https://doi.org/10.1038/nphoton.2015.179. Letter.ADSCrossRefGoogle Scholar
  22. 22.
    Rogalski, A. (2012). History of infrared detectors. Opto-Electronics Review, 20, 279–308.  https://doi.org/10.2478/s11772-012-0037-7.ADSCrossRefGoogle Scholar
  23. 23.
    Maidment, L., Zhang, Z., Howle, C. R., & Reid, D. T. (2016). Stand-off identification of aerosols using mid-infrared backscattering Fourier-transform spectroscopy. Optics Letter, 41, 2266–2269.  https://doi.org/10.1364/OL.41.002266.ADSCrossRefGoogle Scholar
  24. 24.
    Petrov, V. (2015). Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals. Progress in Quantum Electronics, 42, 1–106.  https://doi.org/10.1016/j.pquantelec.2015.04.001.ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Baltuška, A., et al. (2002). Controlling the Carrier-Envelope Phase of Ultrashort Light Pulses with Optical Parametric Amplifiers. Physical Review Letters, 88, 133901.  https://doi.org/10.1103/PhysRevLett.88.133901.ADSCrossRefGoogle Scholar
  26. 26.
    Thiré, N., et al. (2017). 4-W, 100-kHz, few-cycle mid-infrared source with sub-100-mrad carrier-envelope phase noise. Optics Express, 25, 1505–1514.  https://doi.org/10.1364/OE.25.001505.ADSCrossRefGoogle Scholar
  27. 27.
    Seidel, M. et al. (2018). Multi-watt, multi-octave, mid-infrared femtosecond source. Science Advances, 4, eaaq1526.  https://doi.org/10.1126/sciadv.aaq1526.ADSCrossRefGoogle Scholar
  28. 28.
    Thierfelder, C., Sanna, S., Schindlmayr, A., & Schmidt, W. G. (2010). Do we know the band gap of lithium niobate? physica status solidi (c), 7, 362–365.  https://doi.org/10.1002/pssc.200982473.CrossRefGoogle Scholar
  29. 29.
    Petrov, V. (2012). Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources. Optical Materials, 34, 536–554.  https://doi.org/10.1016/j.optmat.2011.03.042.ADSCrossRefGoogle Scholar
  30. 30.
    Cerullo, G., & De Silvestri, S. (2003). Ultrafast optical parametric amplifiers. Review of Scientific Instruments, 74, 1–18.  https://doi.org/10.1063/1.1523642.ADSCrossRefGoogle Scholar
  31. 31.
    Steinle, T., Steinmann, A., Hegenbarth, R., & Giessen, H. (2014). Watt-level optical parametric amplifier at 42 MHz tunable from 1.35 to 4.5 \(mu \)m coherently seeded with solitons. Optics Express, 22, 9567–9573.  https://doi.org/10.1364/OE.22.009567.ADSCrossRefGoogle Scholar
  32. 32.
    Hansel, T., Köhler, W., Assion, A., Bethge, J., & Büttner, E. (2013). Tunable supercontinuum-seeded 130fs OPA for NIR and MIR with 25 nJ pulse energy and 5 MHz repetition rate. CLEO, 2013, 1–2.  https://doi.org/10.1364/CLEO_SI.2013.CM2L.6.CrossRefGoogle Scholar
  33. 33.
    Iwakuni, K., et al. (2016). Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared. Optics Letter, 41, 3980–3983.  https://doi.org/10.1364/OL.41.003980.ADSCrossRefGoogle Scholar
  34. 34.
    Heidt, A. M., Feehan, J. S., Price, J. H. V., & Feurer, T. (2017). Limits of coherent supercontinuum generation in normal dispersion fibers. Journal of the Optical Society America B, 34, 764–775.  https://doi.org/10.1364/JOSAB.34.000764.ADSCrossRefGoogle Scholar
  35. 35.
    Liu, Y., et al. (2015). Suppressing short-term polarization noise and related spectral decoherence in all-normal dispersion fiber supercontinuum generation. Journal of Lightwave Technology, 33, 1814–1820.  https://doi.org/10.1109/JLT.2015.2397276.ADSCrossRefGoogle Scholar
  36. 36.
    Heidt, A. M. (2010). Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. Journal of the Optical Society of America B, 27, 550–559.  https://doi.org/10.1364/JOSAB.27.000550.CrossRefGoogle Scholar
  37. 37.
    Domingue, S. R., & Bartels, R. A. (2013). Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation. Optics Express, 21, 13305–13321.  https://doi.org/10.1364/OE.21.013305.ADSCrossRefGoogle Scholar
  38. 38.
    Arisholm, G. (1997). General numerical methods for simulating second-order nonlinear interactions in birefringent media. Journal of the Optical Society America B, 14, 2543–2549.  https://doi.org/10.1364/JOSAB.14.002543.ADSCrossRefGoogle Scholar
  39. 39.
    Arisholm, G., & Fonnum, H. (2012). Simulation System For Optical Science (SISYFOS) - tutorial, URL http://www.ffi.no/no/Rapporter/12-02042.pdf
  40. 40.
    Gayer, O., Sacks, Z., Galun, E., & Arie, A. (2008). Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO\(_3\). Applied Physics B, 91, 343–348.  https://doi.org/10.1007/s00340-008-2998-2.CrossRefGoogle Scholar
  41. 41.
    Ishizuki, H., & Taira, T. (2008). Mg-doped congruent LiTaO\(_3\) crystal for large-aperture quasi-phase matching device. Optics Express, 16, 16963–16970.  https://doi.org/10.1364/OE.16.016963.ADSCrossRefGoogle Scholar
  42. 42.
    Shoji, I., Kondo, T., Kitamoto, A., Shirane, M., & Ito, R. (1997). Absolute scale of second-order nonlinear-optical coefficients. Journal of the Optical Society America B, 14, 2268–2294.  https://doi.org/10.1364/JOSAB.14.002268.ADSCrossRefGoogle Scholar
  43. 43.
    Ganeev, R. A., Kulagin, I. A., Ryasnyanskii, A. I., Tugushev, R. I., & Usmanov, T. (2003). The nonlinear refractive indices and nonlinear third-order susceptibilities of quadratic crystals. Optics and Spectroscopy, 94, 561–568.  https://doi.org/10.1134/1.1570482.ADSCrossRefGoogle Scholar
  44. 44.
    Luther-Davies, B. & Yu, Y. Efficient Generation of Ultra-short Pulses in the Infrared from a Simple PPLN Optical Parametric Amplifier. In Nonlinear Optics, NTu2A.4 (Optical Society of America, 2017)  https://doi.org/10.1364/NLO.2017.NTu2A.4.
  45. 45.
    Baudisch, M., Hemmer, M., Pires, H., & Biegert, J. (2014). Performance of MgO:PPLN, KTA, and KNbO\(_3\) for mid-wave infrared broadband parametric amplification at high average power. Optical Letter, 39, 5802–5805.  https://doi.org/10.1364/OL.39.005802.ADSCrossRefGoogle Scholar
  46. 46.
    Rigaud, P., et al. (2016). Supercontinuum-seeded few-cycle mid-infrared OPCPA system. Optics Express, 24, 26494–26502.  https://doi.org/10.1364/OE.24.026494.ADSCrossRefGoogle Scholar
  47. 47.
    Südmeyer, T. et al. (2004). High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO\(_3\). Optics letters29, 1111.  https://doi.org/10.1364/OL.29.001111.ADSCrossRefGoogle Scholar
  48. 48.
    Adler, F. Phase-stabilized, et al. (2009). 1.5 W frequency comb at 2.8-4.8 \(mu \)m. Optics Letters, 34, 1330–1332.  https://doi.org/10.1364/OL.34.001330.ADSCrossRefGoogle Scholar
  49. 49.
    Steinle, T., Mörz, F., Steinmann, A. & Giessen, H. (2016). Ultra-stable high average power femtosecond laser system tunable from 1.33 to 20 \(\mu \)m. Optical Letter41, 4863–4866.  https://doi.org/10.1364/OL.41.004863.ADSCrossRefGoogle Scholar
  50. 50.
    Elu, U., et al. (2017). High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier. Optica, 4, 1024–1029.  https://doi.org/10.1364/OPTICA.4.001024.CrossRefGoogle Scholar
  51. 51.
    Hoover, E. E., & Squier, J. A. (2013). Advances in multiphoton microscopy technology. Nature Photonics, 7, 93–101.  https://doi.org/10.1038/nphoton.2012.361.ADSCrossRefGoogle Scholar
  52. 52.
    Cinque, G., Frogley, M. D., & Bartolini, R. (2011). Far-IR/THz spectral characterization of the coherent synchrotron radiation emission at diamond IR beamline B22. Rendiconti Lincei, 22, 33–47.  https://doi.org/10.1007/s12210-011-0149-x.CrossRefGoogle Scholar
  53. 53.
    Ishizuki, H., & Taira, T. (2005). High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO\(_3\) device with a 5 mm \(\times \,\)5 mm aperture. Optical Letter, 30, 2918–2920.  https://doi.org/10.1364/OL.30.002918.ADSCrossRefGoogle Scholar
  54. 54.
    Isaenko, L., LiGaX\(_2\) (X\(=\)S, Se, Te), et al. (2003). new nonlinear crystals for the mid-IR. Society of America.Google Scholar
  55. 55.
    Petrov, V., et al. (2004). Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS\(_2\) and LiGaSe\(_2\). Applied Physics B, 78, 543–546.  https://doi.org/10.1007/s00340-004-1463-0.CrossRefGoogle Scholar
  56. 56.
    Isaenko, L., et al. (2003). Growth and properties of LiGaX\(_2\) (X = S, Se, Te) single crystals for nonlinear optical applications in the mid-IR. Crystal Research and Technology, 38, 379–387.  https://doi.org/10.1002/crat.200310047.CrossRefGoogle Scholar
  57. 57.
    Møller, U., & Bang, O. (2013). Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order Raman lines cross into anomalous dispersion regime. Electronics Letters, 49, 63–65.  https://doi.org/10.1049/el.2012.3774.CrossRefGoogle Scholar
  58. 58.
    Sheik-Bahae, M., Hagan, D. J., & Van Stryland, E. W. (1990). Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Physical Review Letters, 65, 96–99.  https://doi.org/10.1103/PhysRevLett.65.96.ADSCrossRefGoogle Scholar
  59. 59.
    Kato, K., et al. (2017). Phase-matching properties of LiGaS\(_2\) in the 1.025-10.5910 \(mu \)m spectral range. Optical Letter, 42, 4363–4366.  https://doi.org/10.1364/OL.42.004363.ADSCrossRefGoogle Scholar
  60. 60.
    Mayer, B. et al. (2014). Sub-cycle slicing of phase-locked and intense mid-infrared transients. New Journal of Physics, 16, 063033. http://stacks.iop.org/1367-2630/16/i=6/a=063033.ADSCrossRefGoogle Scholar
  61. 61.
    Tyazhev, A., et al. (2013). Singly-resonant optical parametric oscillation based on the wide band-gap mid-IR nonlinear optical crystal LiGaS\(_2\). Optical Materials, 35, 1612–1615.  https://doi.org/10.1016/j.optmat.2013.03.016.ADSCrossRefGoogle Scholar
  62. 62.
    Chaitanya Kumar, S., et al. (2015). High-power femtosecond mid-infrared optical parametric oscillator at 7 \(\upmu \)m based on CdSiP2. Optical Letter, 40, 1398–1401.  https://doi.org/10.1364/OL.40.001398.ADSCrossRefGoogle Scholar
  63. 63.
    Chaitanya Kumar, S., Schunemann, P. G., Zawilski, K. T., & Ebrahim-Zadeh, M. (2016). Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2. Journal of the Optical Society America B, 33, D44–D56.  https://doi.org/10.1364/JOSAB.33.000D44.CrossRefGoogle Scholar
  64. 64.
    Nubbemeyer, T., et al. (2017). 1 kW, 200 mJ picosecond thin-disk laser system. Optical Letter, 42, 1381–1384.  https://doi.org/10.1364/OL.42.001381.ADSCrossRefGoogle Scholar
  65. 65.
    Fattahi, H., Schwarz, A., Keiber, S., & Karpowicz, N. (2013). Efficient, octave-spanning difference-frequency generation using few-cycle pulses in simple collinear geometry. Optical Letter, 38, 4216–4219.  https://doi.org/10.1364/OL.38.004216.ADSCrossRefGoogle Scholar
  66. 66.
    Pupeza, I. et al. (2014). Compact 0.1-W Source of Octave-Spanning Mid-Infrared Femtosecond Pulses Centered at 10 \(\mu \)m. In CLEO: 2014 Postdeadline Paper Digest, STh5C.7 (Optical Society of America, 2014)  https://doi.org/10.1364/CLEO_SI.2014.STh5C.7.
  67. 67.
    Brons, J. et al. (2017). Efficient, high-power, all-bulk spectral broadening in a quasi-waveguide. In 2017 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CF–9.4 (IEEE 2017).  https://doi.org/10.1109/CLEOE-EQEC.2017.8086741.
  68. 68.
    Fritsch, K., Poetzlberger, M., Pervak, V., Brons, J., & Pronin, O. (2018). All-solid-state multipass spectral broadening to sub-20 fs. Optical Letter, 43, 4643–4646.  https://doi.org/10.1364/OL.43.004643.ADSCrossRefGoogle Scholar
  69. 69.
    Bache, M., Guo, H., & Zhou, B. (2013). Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals. Optical Materials Express, 3, 1647.  https://doi.org/10.1364/OME.3.001647.ADSCrossRefGoogle Scholar
  70. 70.
    Zhou, B., & Bache, M. (2016). Invited article: Multiple-octave spanning high-energy mid-ir supercontinuum generation in bulk quadratic nonlinear crystals. APL Photonics, 1, 050802.  https://doi.org/10.1063/1.4953177.ADSCrossRefGoogle Scholar
  71. 71.
    Sundheimer, M. L., Bierlein, J. D., Bosshard, C., Van Stryland, E. W., & Stegeman, G. I. (1993). Large nonlinear phase modulation in quasi-phase-matched KTP waveguides as a result of cascaded second-order processes. Optical Letter, 18, 1397–1399.  https://doi.org/10.1364/OL.18.001397.ADSCrossRefGoogle Scholar
  72. 72.
    Schunemann, P. G., Zawilski, K. T., Pomeranz, L. A., Creeden, D. J., & Budni, P. A. (2016). Advances in nonlinear optical crystals for mid-infrared coherent sources. Journal of the Optical Society America B, 33, D36–D43.  https://doi.org/10.1364/JOSAB.33.000D36.CrossRefGoogle Scholar
  73. 73.
    Milam, D. (1998). Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. Applied Optics, 37, 546–550.  https://doi.org/10.1364/AO.37.000546.ADSCrossRefGoogle Scholar
  74. 74.
    Kanai, T., et al. (2017). Parametric amplification of 100 fs mid-infrared pulses in ZnGeP\(_2\) driven by a Ho:YAG chirped-pulse amplifier. Optical Letter, 42, 683–686.  https://doi.org/10.1364/OL.42.000683.ADSCrossRefGoogle Scholar
  75. 75.
    Couairon, A., & Mysyrowicz, A. (2007). Femtosecond filamentation in transparent media. Physics Reports, 441, 47–189.  https://doi.org/10.1016/j.physrep.2006.12.005.ADSCrossRefGoogle Scholar
  76. 76.
    extracted from SNLO software (Version 66). URL http://www.as-photonics.com/snlo.
  77. 77.
    Zelmon, D. E., Hanning, E. A., & Schunemann, P. G. (2001). Refractive-index measurements and sellmeier coefficients for zinc germanium phosphide from 2 to 9 \(\mu \)m with implications for phase matching in optical frequency-conversion devices. Journal of the Optical Society America B, 18, 1307–1310.  https://doi.org/10.1364/JOSAB.18.001307.ADSCrossRefGoogle Scholar
  78. 78.
    Hache, A., Sipe, J. E., & van Driel, H. M. (1998). Quantum interference control of electrical currents in gaas. IEEE Journal of Quantum Electronics, 34, 1144–1154.  https://doi.org/10.1109/3.687857.ADSCrossRefGoogle Scholar
  79. 79.
    Petersen, C. R., et al. (2014). Mid-IR supercontinuum covering the 1.4 \(mu \)m to 13.3 \(mu \)m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photonics, 8, 830–834.  https://doi.org/10.1038/nphoton.2014.213.ADSCrossRefGoogle Scholar
  80. 80.
    Zhao, Z., et al. (2016). 1.5-14 \(mu \)m midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber. Optical Letter, 41, 5222–5225.  https://doi.org/10.1364/OL.41.005222.ADSCrossRefGoogle Scholar
  81. 81.
    Møller, U., et al. (2015). Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Optics Express, 23, 3282–3291.  https://doi.org/10.1364/OE.23.003282.ADSCrossRefGoogle Scholar
  82. 82.
    Gattass, R. R., et al. (2012). All-fiber chalcogenide-based mid-infrared supercontinuum source. Optical Fiber Technology, 18, 345–348.  https://doi.org/10.1016/j.yofte.2012.07.003.ADSCrossRefGoogle Scholar
  83. 83.
    Kedenburg, S., Steinle, T., Mörz, F., Steinmann, A., & Giessen, H. (2015). High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber. Optical Letter, 40, 2668–2671.  https://doi.org/10.1364/OL.40.002668.ADSCrossRefGoogle Scholar
  84. 84.
    Yu, Y., et al. (2014). A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide. Laser & Photonics Reviews, 8, 792–798.  https://doi.org/10.1002/lpor.201400034.ADSCrossRefGoogle Scholar
  85. 85.
    Silva, F., et al. (2012). Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal. Nature Communications, 3, 807.  https://doi.org/10.1038/ncomms1816.CrossRefGoogle Scholar
  86. 86.
    Lanin, A. A., Voronin, A. A., Stepanov, E. A., Fedotov, A. B., & Zheltikov, A. M. (2015). Multioctave, 3–18 \(\mu \)m sub-two-cycle supercontinua from self-compressing, self-focusing soliton transients in a solid. Optical Letter, 40, 974–977.  https://doi.org/10.1364/OL.40.000974.ADSCrossRefGoogle Scholar
  87. 87.
    Moses, J., & Wise, F. W. (2006). Controllable self-steepening of ultrashort pulses in quadratic nonlinear media. Physical Review Letter, 97, 073903.  https://doi.org/10.1103/PhysRevLett.97.073903.ADSCrossRefGoogle Scholar
  88. 88.
    Saraceno, C. J., et al. (2014). Ultrafast thin-disk laser with 80 \(\mu \)J pulse energy and 242 W of average power. Optical Letter, 39, 9–12.  https://doi.org/10.1364/OL.39.000009.ADSCrossRefGoogle Scholar
  89. 89.
    Brons, J., et al. (2016). Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator. Optical Letter, 41, 3567–3570.  https://doi.org/10.1364/OL.41.003567.ADSCrossRefGoogle Scholar
  90. 90.
    Seidel, M., et al. (2017). Efficient high-power ultrashort pulse compression in self-defocusing bulk media. Scientific Reports, 7, 1410.  https://doi.org/10.1038/s41598-017-01504-x.ADSCrossRefGoogle Scholar
  91. 91.
    Liang, H., et al. (2017). High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier. Nature Communications, 8, 141.  https://doi.org/10.1038/s41467-017-00193-4.ADSCrossRefGoogle Scholar
  92. 92.
    Krausz, F., & Stockman, M. I. (2014). Attosecond metrology: from electron capture to future signal processing. Nature Photonics, 8, 205–213.  https://doi.org/10.1038/nphoton.2014.28.ADSCrossRefGoogle Scholar
  93. 93.
    Paasch-Colberg, T., et al. (2016). Sub-cycle optical control of current in a semiconductor: from the multiphoton to the tunneling regime. Optica, 3, 1358–1361.  https://doi.org/10.1364/OPTICA.3.001358.CrossRefGoogle Scholar
  94. 94.
    Garg, M., et al. (2016). Multi-petahertz electronic metrology. Nature, 538, 359–363.  https://doi.org/10.1038/nature19821.ADSCrossRefGoogle Scholar
  95. 95.
    Miller, L. M., Tobin, M. J., Chio-Srichan, S. & Dumas, P. (2009). The Use of Synchrotron Radiation for Biomedical Applications of Infrared Microscopy. In Barth, A. & Haris, P. I. (eds.) Biological and Biomedical Infrared Spectroscopy Amsterdam: IOS Press.  https://doi.org/10.3233/978-1-60750-045-2-403.
  96. 96.
    Pupeza, I. et al. (2017). Field-resolved spectroscopy in the molecular fingerprint region. In 2017 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CH–2.4. Munich: IEEE.  https://doi.org/10.1109/CLEOE-EQEC.2017.8086859.
  97. 97.
    Huber, M., et al. (2017). Active intensity noise suppression for a broadband mid-infrared laser source. Optics Express, 25, 22499–22509.  https://doi.org/10.1364/OE.25.022499.ADSCrossRefGoogle Scholar
  98. 98.
    Edwards, D. F. (1997). Gallium Selenide (GaSe). In Palik, E. D. (ed.) Handbook of Optical Constants of Solids (pp. 473 – 487). Burlington: Academic Press.  https://doi.org/10.1016/B978-012544415-6.50113-8.CrossRefGoogle Scholar
  99. 99.
    Swiderski, J. (2014). High-power mid-infrared supercontinuum sources: Current status and future perspectives. Progress in Quantum Electronics, 38, 189–235.  https://doi.org/10.1016/j.pquantelec.2014.10.002.ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut de Science et d’Ingénierie SupramoléculairesStrasbourgFrance

Personalised recommendations