Abstract
In this chapter, firstly specifies the research area and defines the research objectives of this thesis. Secondly, it introduces the main methods from a historical point of view, outlines the shortcomings of currently prevailing laser technologies, and explains possible applications for a new generation of mode-locked femtosecond oscillators. Thirdly, some important properties of the thin-disk technology are introduced. In Sect. 1.4, fundamental physical concepts are explained in an illustrative manner.
References
- 1.Maiman, T. H. (1960). Optical radiation in ruby. Nature, 187, 493–494. https://doi.org/10.1038/187493a0.ADSCrossRefGoogle Scholar
- 2.Einstein, A. (1916). Strahlungs-Emission und Absorption nach der Quantentheorie. Verhandlungen der Deutschen Physikalischen Gesellschaft, 18, 318–323.ADSGoogle Scholar
- 3.Lukishova, S. G., & Valentin, A. (2010). Fabrikant: Negative absorption, his 1951 patent application for amplification of electromagnetic radiation (ultraviolet, visible, infrared and radio spectral regions) and his experiments. Journal of the European Optical Society - Rapid Publications, 5, 10045s. https://doi.org/10.2971/jeos.2010.10045s.
- 4.Basov, N. G., & Prochorov, A. (1954). Vorschläge und Rechnungen zu einem Mikrowellen-Oszillator basierend auf stimulierter Emission. Zh. Eksperim. i Teor. Fiz., 27, 431.Google Scholar
- 5.Schawlow, A. L., & Townes, C. H. (1958). Infrared and optical masers. Physical Review, 112, 1940–1949. https://doi.org/10.1103/PhysRev.112.1940.ADSCrossRefGoogle Scholar
- 6.Overton, G., Nogee, A., Belforte, D., & Holton, C. (2017). Annual laser market review & forecast: Where have all the lasers gone? Laser Focus World, 53, 32–52. https://digital.laserfocusworld.com/laserfocusworld/201701/?pg=35&pm=2&u1=friend.
- 7.laserfest.org. (2017). Laser Pioneers. Retrieved April 26, 2017 from http://laserfest.org/lasers/pioneers/nobel.cfm.
- 8.Coherent. (2015). Laser materials processing introduction to lasers for materials processing. Retrieved November 25, 2015 from https://www.coherent.com/applications/index.cfm?fuseaction=Forms.page&PageID=98.
- 9.Spence, D. E., Kean, P. N., & Sibbett, W. (1990). Sub-100fs pulse generation from a self-modelocked titanium:sapphire laser. In Conference on Lasers and Electro-optics, CLEO, Techical Digest Series (pp. 619–620). Optical Society of America.Google Scholar
- 10.Spence, D. E., Kean, P. N., & Sibbett, W. (1991). 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Optics Letters, 16, 42–44. https://doi.org/10.1364/OL.16.000042.ADSCrossRefGoogle Scholar
- 11.Fattahi, H., et al. (2014). Third-generation femtosecond technology. Optica, 1, 45–63. https://doi.org/10.1364/OPTICA.1.000045.CrossRefGoogle Scholar
- 12.Fattahi, H. (2015). Third-generation femtosecond technology. Dissertation, Ludwig-Maximilians-Universität, München.Google Scholar
- 13.Südmeyer, T., et al. (2008). Femtosecond laser oscillators for high-field science. Nature Photonics, 2, 599–604. https://doi.org/10.1038/nphoton.2008.194.CrossRefGoogle Scholar
- 14.Hargrove, L. E., Fork, R. L., & Pollack, M. A. (1964). Locking of He-Ne laser modes induced by synchronous intracavity modulation. Applied Physics Letters, 5, 4–5. https://doi.org/10.1063/1.1754025.ADSCrossRefGoogle Scholar
- 15.Mocker, H. W., & Collins, R. J. (1965). Mode competition and self-locking effects in a Q-switched ruby laser. Applied Physics Letters, 7, 270–273. https://doi.org/10.1063/1.1754253.ADSCrossRefGoogle Scholar
- 16.DeMaria, A. J., Stetser, D. A., & Heynau, H. (1966). Self mode-locking of lasers with saturable absorbers. Applied Physics Letters, 8, 174–176. https://doi.org/10.1063/1.1754541.ADSCrossRefGoogle Scholar
- 17.Ippen, E., Shank, C., & Dienes, A. (1972). Passive mode locking of the CW dye laser. Applied Physics Letters, 21, 348–350. https://doi.org/10.1063/1.1654406.ADSCrossRefGoogle Scholar
- 18.Knox, W. H., et al. (1985). Optical pulse compression to 8 fs at a 5 kHz repetition rate. Applied Physics Letters, 46, 1120–1121. https://doi.org/10.1063/1.95728.ADSCrossRefGoogle Scholar
- 19.Jones, D. J., et al. (2000). Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288, 635–639. https://doi.org/10.1126/science.288.5466.635.ADSCrossRefGoogle Scholar
- 20.Ell, R., et al. (2001). Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Optics Letters, 26, 373–375. https://doi.org/10.1364/OL.26.000373.ADSCrossRefGoogle Scholar
- 21.Aus der Au, J., et al. (2000). 16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser. Optics Letters, 25, 859–861. https://doi.org/10.1364/OL.25.000859.ADSCrossRefGoogle Scholar
- 22.Baer, C. R. E., et al. (2010). Femtosecond thin-disk laser with 141 W of average power. Optics Letters, 35, 2302–2304. https://doi.org/10.1364/OL.35.002302.ADSCrossRefGoogle Scholar
- 23.Pronin, O., et al. (2011). High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. Optics Letters, 36, 4746–4748. https://doi.org/10.1364/OL.36.004746.ADSCrossRefGoogle Scholar
- 24.Pronin, O., et al. (2015). High-power multi-megahertz source of waveform-stabilized few-cycle light. Nature Communications, 6, 6988. https://doi.org/10.1038/ncomms7988.
- 25.Fermann, M. E., & Hartl, I. (2009). Ultrafast fiber laser technology. IEEE Journal of Selected Topics in Quantum Electronics, 15, 191–206. https://doi.org/10.1109/JSTQE.2008.2010246.ADSCrossRefGoogle Scholar
- 26.Fermann, M. E., & Hartl, I. (2013). Ultrafast fibre lasers. Nature Photonics, 7, 868–874. https://doi.org/10.1038/nphoton.2013.280.ADSCrossRefGoogle Scholar
- 27.Jauregui, C., Limpert, J., & Tünnermann, A. (2013). High-power fibre lasers. Nature Photonics, 7, 861–867. https://doi.org/10.1038/nphoton.2013.273.ADSCrossRefGoogle Scholar
- 28.Müller, M., et al. (2016). 1 kW 1 mJ eight-channel ultrafast fiber laser. Optics Letters, 41, 3439–3442. https://doi.org/10.1364/OL.41.003439.ADSCrossRefGoogle Scholar
- 29.Krauss, G., et al. (2010). Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nature Photonics, 4, 33–36. https://doi.org/10.1038/nphoton.2009.258.ADSCrossRefGoogle Scholar
- 30.Giunta, M., et al. (2016). Ultra low noise Er:Fiber frequency comb comparison. In Conference on Lasers and Electro-Optics, STh4H.1. Optical Society of America. https://doi.org/10.1364/CLEO_SI.2016.STh4H.1.
- 31.Mourou, G., Brocklesby, B., Tajima, T., & Limpert, J. (2013). The future is fibre accelerators. Nature Photonics, 7, 258–261. https://doi.org/10.1038/nphoton.2013.75.ADSCrossRefGoogle Scholar
- 32.Russbueldt, P., et al. (2015). Innoslab amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 21, 447–463. https://doi.org/10.1109/JSTQE.2014.2333234.ADSCrossRefGoogle Scholar
- 33.Negel, J.-P., et al. (2015). Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm. Optics Express, 23, 21064–21077. https://doi.org/10.1364/OE.23.021064.ADSCrossRefGoogle Scholar
- 34.Nubbemeyer, T., et al. (2017). 1 kW, 200 mJ picosecond thin-disk laser system. Optics Letters, 42, 1381–1384. https://doi.org/10.1364/OL.42.001381.ADSCrossRefGoogle Scholar
- 35.Baumgartl, M., Lecaplain, C., Hideur, A., Limpert, J., & Tünnermann, A. (2012). 66 W average power from a microjoule-class sub-100 fs fiber oscillator. Optics Letters, 37, 1640–1642. https://doi.org/10.1364/OL.37.001640.ADSCrossRefGoogle Scholar
- 36.Krausz, F., et al. (1992). Femtosecond solid-state lasers. IEEE Journal of Quantum Electronics, 28, 2097–2122. https://doi.org/10.1109/3.159520.ADSCrossRefGoogle Scholar
- 37.French, P. M. W. (1995). The generation of ultrashort laser pulses. Reports on Progress in Physics, 58, 169. https://stacks.iop.org/0034-4885/58/i=2/a=001.ADSCrossRefGoogle Scholar
- 38.Zewail, A. H. (2000). Femtochemistry: Atomic-scale dynamics of the chemical bond. The Journal of Physical Chemistry A, 104, 5660–5694. https://doi.org/10.1021/jp001460h.ADSCrossRefGoogle Scholar
- 39.Zewail, A. Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers. Retrieved November 25, 2015 from http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1999/zewail-lecture.html.
- 40.Hentschel, M., et al. (2001). Attosecond metrology. Nature, 414, 509–513. https://doi.org/10.1038/35107000.ADSCrossRefGoogle Scholar
- 41.Corkum, P. B., & Krausz, F. (2007). Attosecond science. Nature Physics, 3, 381–387. https://doi.org/10.1038/nphys620.ADSCrossRefGoogle Scholar
- 42.Krausz, F., & Ivanov, M. (2009). Attosecond physics. Reviews of Modern Physics, 81, 163–234. https://doi.org/10.1103/RevModPhys.81.163.ADSCrossRefGoogle Scholar
- 43.Wirth, A., et al. (2011). Synthesized light transients. Science, 334, 195–200. https://doi.org/10.1126/science.1210268.ADSCrossRefGoogle Scholar
- 44.Hassan, M. T., et al. (2016). Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature, 530, 66–70. https://doi.org/10.1038/nature16528.ADSCrossRefGoogle Scholar
- 45.Clark-MXR, Inc. (2018). Clark-MXR company history. Retrieved January 21, 2018 from http://www.cmxr.com/AboutUs/CompanyHistory.html.
- 46.Wilhelm, T., Piel, J., & Riedle, E. (1997). Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter. Optics Letters, 22, 1494–1496. https://doi.org/10.1364/OL.22.001494.ADSCrossRefGoogle Scholar
- 47.Cerullo, G., & De Silvestri, S. (2003). Ultrafast optical parametric amplifiers. Review of Scientific Instruments, 74, 1–18. https://doi.org/10.1063/1.1523642.ADSCrossRefGoogle Scholar
- 48.Dudley, J. M., Genty, G., & Coen, S. (2006). Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 78, 1135–1184. https://doi.org/10.1103/RevModPhys.78.1135.ADSCrossRefGoogle Scholar
- 49.Couairon, A., & Mysyrowicz, A. (2007). Femtosecond filamentation in transparent media. Physics Reports, 441, 47–189. https://doi.org/10.1016/j.physrep.2006.12.005.ADSCrossRefGoogle Scholar
- 50.Udem, T., Holzwarth, R., & Hänsch, T. W. (2002). Optical frequency metrology. Nature, 416, 233–237. https://doi.org/10.1038/416233a.ADSCrossRefGoogle Scholar
- 51.Hall, J. L. & Hänsch, T. W. (2015). Contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique. Retrieved November 25, 2015 from http://www.nobelprize.org/nobel_prizes/physics/laureates/2005/.
- 52.Xu, L., et al. (1996). Route to phase control of ultrashort light pulses. Optics Letters, 21, 2008–2010. https://doi.org/10.1364/OL.21.002008.ADSCrossRefGoogle Scholar
- 53.Corkum, P. B. (1993). Plasma perspective on strong field multiphoton ionization. Physical Review Letters, 71, 1994–1997. https://doi.org/10.1103/PhysRevLett.71.1994.ADSCrossRefGoogle Scholar
- 54.Brabec, T., & Krausz, F. (2000). Intense few-cycle laser fields: Frontiers of nonlinear optics. Reviews of Modern Physics, 72, 545–591. https://doi.org/10.1103/RevModPhys.72.545.ADSCrossRefGoogle Scholar
- 55.Cho, S. H., Bouma, B. E., Ippen, E. P., & Fujimoto, J. G. (1999). Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:Al\(_2\)O\(_3\) laser with a multiple-pass cavity. Optics Letters, 24, 417–419. https://doi.org/10.1364/OL.24.000417.ADSCrossRefGoogle Scholar
- 56.Naumov, S., et al. (2005). Approaching the microjoule frontier with femtosecond laser oscillators. New Journal of Physics, 7, 216. https://stacks.iop.org/1367-2630/7/i=1/a=216.ADSCrossRefGoogle Scholar
- 57.Dewald, S., et al. (2006). Ionization of noble gases with pulses directly from a laser oscillator. Optics Letters, 31, 2072–2074. https://doi.org/10.1364/OL.31.002072.ADSCrossRefGoogle Scholar
- 58.Saraceno, C. J., et al. (2012). 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment. Optics Express, 20, 23535–23541. https://doi.org/10.1364/OE.20.023535.ADSCrossRefGoogle Scholar
- 59.Brons, J., et al. (2014). Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Optics Letters, 39, 6442–6445. https://doi.org/10.1364/OL.39.006442.ADSCrossRefGoogle Scholar
- 60.Bauer, D., Zawischa, I., Sutter, D. H., Killi, A., & Dekorsy, T. (2012). Mode-locked Yb:YAG thin-disk oscillator with 41 \(\upmu \)J pulse energy at 145 W average infrared power and high power frequency conversion. Optics Express, 20, 9698–9704. https://doi.org/10.1364/OE.20.009698.ADSCrossRefGoogle Scholar
- 61.Saraceno, C. J., et al. (2014). Ultrafast thin-disk laser with 80 \(\upmu \)J pulse energy and 242 W of average power. Optics Letters, 39, 9–12. https://doi.org/10.1364/OL.39.000009.ADSCrossRefGoogle Scholar
- 62.Brons, J., et al. (2017). Efficient, high-power, all-bulk spectral broadening in a quasi-waveguide. In 2017 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CF–9.4. IEEE. https://doi.org/10.1109/CLEOE-EQEC.2017.8086741.
- 63.Znakovskaya, I., et al. (2014). Dual frequency comb spectroscopy with a single laser. Optics Letters, 39, 5471–5474. https://doi.org/10.1364/OL.39.005471.ADSCrossRefGoogle Scholar
- 64.Pupeza, I., et al. (2017). Field-resolved spectroscopy in the molecular fingerprint region. In 2017 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CH–2.4. IEEE, Munich. https://doi.org/10.1109/CLEOE-EQEC.2017.8086859.
- 65.Pronin, O. (2012). Towards a compact thin-disk-based femtosecond XUV source. Dissertation, Ludwig-Maximilians-Universität, München.Google Scholar
- 66.Schliesser, A., Picque, N., & Hänsch, T. W. (2012). Mid-infrared frequency combs. Nature Photonics, 6, 440–449. https://doi.org/10.1038/nphoton.2012.142.ADSCrossRefGoogle Scholar
- 67.Eisele, M., et al. (2014). Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nature Photonics, 8, 841–845. https://doi.org/10.1038/nphoton.2014.225.ADSCrossRefGoogle Scholar
- 68.McClung, F. J., & Hellwarth, R. W. (1962). Giant optical pulsations from ruby. Journal of Applied Physics, 33, 828–829. https://doi.org/10.1063/1.1777174.ADSCrossRefGoogle Scholar
- 69.Boyd, R. W. (2008). Chapter 11 - the electrooptic and photorefractive effects. Nonlinear optics (3rd ed., pp. 511–541). Burlington: Academic. https://doi.org/10.1016/B978-0-12-369470-6.00011-3.CrossRefGoogle Scholar
- 70.(2006). Q-switching. Solid-state laser engineering (6th ed., pp. 488–533). New York: Springer. https://doi.org/10.1007/0-387-29338-8_9.
- 71.Svelto, O. (2010). 8 Transient laser behavior. Principles of lasers (5th ed., pp. 313–373). New York: Springer. https://doi.org/10.1007/978-1-4419-1302-9.CrossRefGoogle Scholar
- 72.Lamb, W. E. (1964). Theory of an optical maser. Physical Review, 134, A1429–A1450. https://doi.org/10.1103/PhysRev.134.A1429.ADSCrossRefGoogle Scholar
- 73.Kärtner, F. X., Aus der Au, J., & Keller, U. (1998). Mode-locking with slow and fast saturable absorbers-what’s the difference? IEEE Journal of Selected Topics in Quantum Electronics, 4, 159–168. https://doi.org/10.1109/2944.686719.ADSCrossRefGoogle Scholar
- 74.Weiner, A. M. (2008). Ultrafast optics. New Jercy: Wiley, Inc., https://doi.org/10.1002/9780470473467.CrossRefGoogle Scholar
- 75.Diels, J.-C., & Rudolph, W. (2006). Ultrashort laser pulse phenomena (2nd ed.). Burlington: Academic.Google Scholar
- 76.Shank, C. V., & Ippen, E. P. (1974). Subpicosecond kilowatt pulses from a mode-locked cw dye laser. Applied Physics Letters, 24, 373–375. https://doi.org/10.1063/1.1655222.ADSCrossRefGoogle Scholar
- 77.Fork, R. L., Greene, B. I., & Shank, C. V. (1981). Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking. Applied Physics Letters, 38, 671–672. https://doi.org/10.1063/1.92500.ADSCrossRefGoogle Scholar
- 78.Weiner, A. M. (2008). Principles of mode-locking. Ultrafast optics (pp. 32–84). New Jercy: Wiley, Inc., https://doi.org/10.1002/9780470473467.ch2.CrossRefGoogle Scholar
- 79.Weiner, A. M. (2008). Ultrafast-pulse measurement methods. Ultrafast optics (pp. 85–146). New Jercy: Wiley, Inc., https://doi.org/10.1002/9780470473467.ch3.CrossRefGoogle Scholar
- 80.Diels, J.-C., & Rudolph, W. (2006). 9 - diagnostic techniques. Ultrashort laser pulse phenomena (2nd ed., pp. 457–489). Burlington: Academic. https://doi.org/10.1016/B978-012215493-5/50010-0.CrossRefGoogle Scholar
- 81.Valdmanis, J. A., Fork, R. L., & Gordon, J. P. (1985). Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain. Optics Letters, 10, 131–133. https://doi.org/10.1364/OL.10.000131.ADSCrossRefGoogle Scholar
- 82.Zhang, J., et al. (2015). 49-fs Yb:YAG thin-disk oscillator with distributed Kerr-lens mode-locking. In 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, PDA.1. Optical Society of America. https://www.osapublishing.org/abstract.cfm?URI=EQEC-2015-PD_A_1.
- 83.Paradis, C., et al. (2017). Generation of 35-fs pulses from a Kerr lens mode-locked Yb:Lu\(_2\)O\(_3\) thin-disk laser. Optics Express, 25, 14918–14925. https://doi.org/10.1364/OE.25.014918.ADSCrossRefGoogle Scholar
- 84.Stolen, R. H., & Lin, C. (1978). Self-phase-modulation in silica optical fibers. Physical Review A, 17, 1448–1453. https://doi.org/10.1103/PhysRevA.17.1448.ADSCrossRefGoogle Scholar
- 85.Nakatsuka, H., Grischkowsky, D., & Balant, A. C. (1981). Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion. Physical Review Letters, 47, 910–913. https://doi.org/10.1103/PhysRevLett.47.910.ADSCrossRefGoogle Scholar
- 86.Treacy, E. (1969). Optical pulse compression with diffraction gratings. IEEE Journal of Quantum Electronics, 5, 454–458. https://doi.org/10.1109/JQE.1969.1076303.ADSCrossRefGoogle Scholar
- 87.Fork, R. L., Martinez, O. E., & Gordon, J. P. (1984). Negative dispersion using pairs of prisms. Optics Letters, 9, 150–152. https://doi.org/10.1364/OL.9.000150.ADSCrossRefGoogle Scholar
- 88.Fork, R. L., Cruz, C. H. B., Becker, P. C., & Shank, C. V. (1987). Compression of optical pulses to six femtoseconds by using cubic phase compensation. Optics Letters, 12, 483–485. https://doi.org/10.1364/OL.12.000483.ADSCrossRefGoogle Scholar
- 89.Moulton, P. F. (1986). Spectroscopic and laser characteristics of Ti:Al\(_2\)O\(_3\). Journal of the Optical Society of America B, 3, 125–133. https://doi.org/10.1364/JOSAB.3.000125.ADSCrossRefGoogle Scholar
- 90.Haus, H. A. (1975). Theory of mode locking with a fast saturable absorber. Journal of Applied Physics, 46, 3049–3058. https://doi.org/10.1063/1.321997.ADSCrossRefGoogle Scholar
- 91.Baltuška, A., Wei, Z., Pshenichnikov, M. S., & Wiersma, D. A. (1997). Optical pulse compression to 5 fs at a 1-MHz repetition rate. Optics Letters, 22, 102–104. https://doi.org/10.1364/OL.22.000102.ADSCrossRefGoogle Scholar
- 92.Lariontsev, E. G., & Serkin, V. N. (1975). Possibility of using self-focusing for increasing contrast and narrowing of ultrashort light pulses. Soviet Journal of Quantum Electronics, 5, 796. https://stacks.iop.org/0049-1748/5/i=7/a=A21.CrossRefGoogle Scholar
- 93.Salin, F., Piché, M., & Squier, J. (1991). Mode locking of Ti:Al\(_2\)O\(_3\) lasers and self-focusing: A gaussian approximation. Optics Letters, 16, 1674–1676. https://doi.org/10.1364/OL.16.001674.ADSCrossRefGoogle Scholar
- 94.Piché, M. (1991). Beam reshaping and self-mode-locking in nonlinear laser resonators. Optics Communications, 86, 156–160. https://doi.org/10.1016/0030-4018(91)90552-O.ADSCrossRefGoogle Scholar
- 95.Spinelli, L., Couillaud, B., Goldblatt, N. & Negus, D. K., (1991). Starting and generation of sub-100fs pulses in Ti:Al\(_2\)O\(_3\) by self-focusing. In Conference on Lasers and Electro-Optics, CPD7. Optical Society of America. http://www.osapublishing.org/abstract.cfm?URI=CLEO-1991-CPD7.
- 96.Rausch, S., et al. (2008). Controlled waveforms on the single-cycle scale from a femtosecond oscillator. Optics Express, 16, 9739–9745. https://doi.org/10.1364/OE.16.009739.ADSCrossRefGoogle Scholar
- 97.Razskazovskaya, O., Krausz, F., & Pervak, V. (2017). Multilayer coatings for femto- and attosecond technology. Optica, 4, 129–138. https://doi.org/10.1364/OPTICA.4.000129.CrossRefGoogle Scholar
- 98.Szipöcs, R., Spielmann, C., Krausz, F., & Ferencz, K. (1994). Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Optics Letters, 19, 201–203. https://doi.org/10.1364/OL.19.000201.ADSCrossRefGoogle Scholar
- 99.McPherson, A., et al. (1987). Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. Journal of the Optical Society of America B, 4, 595–601. https://doi.org/10.1364/JOSAB.4.000595.ADSCrossRefGoogle Scholar
- 100.Ferray, M., et al. (1988). Multiple-harmonic conversion of 1064 nm radiation in rare gases. Journal of Physics B: Atomic, Molecular and Optical Physics, 21, L31. https://stacks.iop.org/0953-4075/21/i=3/a=001.ADSCrossRefGoogle Scholar
- 101.Li, X. F., L’Huillier, A., Ferray, M., Lompré, L. A., & Mainfray, G. (1989). Multiple-harmonic generation in rare gases at high laser intensity. Physical Review A, 39, 5751–5761. https://doi.org/10.1103/PhysRevA.39.5751.ADSCrossRefGoogle Scholar
- 102.Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A., & Corkum, P. B. (1994). Theory of high-harmonic generation by low-frequency laser fields. Physical Review A, 49, 2117–2132. https://doi.org/10.1103/PhysRevA.49.2117.ADSCrossRefGoogle Scholar
- 103.Goulielmakis, E., et al. (2008). Single-cycle nonlinear optics. Science, 320, 1614–1617. https://doi.org/10.1126/science.1157846.ADSCrossRefGoogle Scholar
- 104.Zhao, K., et al. (2012). Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Optics Letters, 37, 3891–3893. https://doi.org/10.1364/OL.37.003891.ADSCrossRefGoogle Scholar
- 105.Gaumnitz, T., et al. (2017). Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Optics Express, 25, 27506–27518. https://doi.org/10.1364/OE.25.027506.ADSCrossRefGoogle Scholar
- 106.Chini, M., Zhao, K., & Chang, Z. (2014). The generation, characterization and applications of broadband isolated attosecond pulses. Nature Photonics, 8, 178–186. https://doi.org/10.1038/nphoton.2013.362.ADSCrossRefGoogle Scholar
- 107.Apolonski, A., et al. (2000). Controlling the phase evolution of few-cycle light pulses. Physical Review Letters, 85, 740–743. https://doi.org/10.1103/PhysRevLett.85.740.ADSCrossRefGoogle Scholar
- 108.Seres, E., Seres, J. & Spielmann, C., (2012). Extreme ultraviolet light source based on intracavity high harmonic generation in a mode locked Ti:sapphire oscillator with 9.4 MHz repetition rate. Optics Express20, 6185–6190. https://doi.org/10.1364/OE.20.006185.ADSCrossRefGoogle Scholar
- 109.Chiang, C.-T., Blattermann, A., Huth, M., Kirschner, J., & Widdra, W. (2012). High-order harmonic generation at 4 MHz as a light source for time-of-flight photoemission spectroscopy. Applied Physics Letters, 101, 071116. https://doi.org/10.1063/1.4746264.ADSCrossRefGoogle Scholar
- 110.Gohle, C., et al. (2005). A frequency comb in the extreme ultraviolet. Nature, 436, 234–237. https://doi.org/10.1038/nature03851.ADSCrossRefGoogle Scholar
- 111.Pupeza, I., et al. (2013). Compact high-repetition-rate source of coherent 100 eV radiation. Nature Photonics, 7, 608. https://doi.org/10.1038/nphoton.2013.156.ADSCrossRefGoogle Scholar
- 112.Carstens, H., et al. (2016). High-harmonic generation at 250 MHz with photon energies exceeding 100 eV. Optica, 3, 366–369. https://doi.org/10.1364/OPTICA.3.000366.CrossRefGoogle Scholar
- 113.Lee, J., Carlson, D. R., & Jones, R. J. (2011). Optimizing intracavity high harmonic generation for XUV fs frequency combs. Optics Express, 19, 23315–23326. https://doi.org/10.1364/OE.19.023315.ADSCrossRefGoogle Scholar
- 114.Cingoz, A., et al. (2012). Direct frequency comb spectroscopy in the extreme ultraviolet. Nature, 482, 68–71. https://doi.org/10.1038/nature10711.ADSCrossRefGoogle Scholar
- 115.Ozawa, A., Zhao, Z., Kuwata-Gonokami, M., & Kobayashi, Y. (2015). High average power coherent VUV generation at 10 MHz repetition frequency by intracavity high harmonic generation. Optics Express, 23, 15107–15118. https://doi.org/10.1364/OE.23.015107.ADSCrossRefGoogle Scholar
- 116.Yost, D. C., Schibli, T. R., & Ye, J. (2008). Efficient output coupling of intracavity high-harmonic generation. Optics Letters, 33, 1099–1101. https://doi.org/10.1364/OL.33.001099.ADSCrossRefGoogle Scholar
- 117.Ozawa, A., et al. (2008). Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation. Optics Express, 16, 6233–6239. https://doi.org/10.1364/OE.16.006233.ADSCrossRefGoogle Scholar
- 118.Pronin, O., et al. (2011). Ultrabroadband efficient intracavity XUV output coupler. Optics Express, 19, 10232–10240. https://doi.org/10.1364/OE.19.010232.ADSCrossRefGoogle Scholar
- 119.Esser, D., et al. (2013). Laser-manufactured mirrors for geometrical output coupling of intracavity-generated high harmonics. Optics Express, 21, 26797–26805. https://doi.org/10.1364/OE.21.026797.ADSCrossRefGoogle Scholar
- 120.Lilienfein, N., et al. (2017). Enhancement cavities for few-cycle pulses. Optics Letters, 42, 271–274. https://doi.org/10.1364/OL.42.000271.ADSCrossRefGoogle Scholar
- 121.Salin, F. (2005). How to manipulate and change the characteristics of laser pulses. In C. Rullière (Ed.), Femtosecond laser pulses: Principles and experiments (pp. 175–194). New York: Springer. https://doi.org/10.1007/0-387-26674-7_6.CrossRefGoogle Scholar
- 122.Belanger, P. & Boivin, J. Multigigawatt peak-power generation from a tandem of TEA-CO\(_2\) lasers. IEEE Journal of Quantum Electronics11, 895–896 (1975). https://doi.org/10.1109/JQE.1975.1068836. Earlier, not accessible paper in Belanger, P. A., & Boivin, J. (1974). Phys. Can. 30(3), 47.ADSCrossRefGoogle Scholar
- 123.Georges, P., et al. (1991). High-efficiency multipass Ti:sapphire amplifiers for a continuous-wave single-mode laser. Optics Letters, 16, 144–146. https://doi.org/10.1364/OL.16.000144.ADSCrossRefGoogle Scholar
- 124.Strickland, D., & Mourou, G. (1985). Compression of amplified chirped optical pulses. Optics Communications, 56, 219–221. https://doi.org/10.1016/0030-4018(85)90120-8.ADSCrossRefGoogle Scholar
- 125.Perry, M. D., & Mourou, G. (1994). Terawatt to petawatt subpicosecond lasers. Science, 264, 917–924. https://doi.org/10.1126/science.264.5161.917.ADSCrossRefGoogle Scholar
- 126.Perry, M. D., et al. (1999). Petawatt laser pulses. Optics Letters, 24, 160–162. https://doi.org/10.1364/OL.24.000160.ADSCrossRefGoogle Scholar
- 127.Dubietis, A., Jonusauskas, G., & Piskarskas, A. (1992). Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Optics Communications, 88, 437–440. https://doi.org/10.1016/0030-4018(92)90070-8.ADSCrossRefGoogle Scholar
- 128.Russbueldt, P., Mans, T., Weitenberg, J., Hoffmann, H. D., & Poprawe, R. (2010). Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. Optics Letters, 35, 4169–4171. https://doi.org/10.1364/OL.35.004169.ADSCrossRefGoogle Scholar
- 129.Mikkelsen, A., et al. (2009). Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains. Review of Scientific Instruments, 80, 123703. https://doi.org/10.1063/1.3263759.ADSCrossRefGoogle Scholar
- 130.Aidelsburger, M., Kirchner, F. O., Krausz, F., & Baum, P. (2010). Single-electron pulses for ultrafast diffraction. Proceedings of the National Academy of Sciences of the United States of America, 107, 19714–19719. https://doi.org/10.1073/pnas.1010165107.ADSCrossRefGoogle Scholar
- 131.Gliserin, A., Walbran, M., Krausz, F., & Baum, P. (2015). Sub-phonon-period compression of electron pulses for atomic diffraction. Nature Communications, 6, 8723. https://doi.org/10.1038/ncomms9723.
- 132.Liu, Y., et al. (2007). Towards non-sequential double ionization of Ne and Ar using a femtosecond laser oscillator. Optics Express, 15, 18103–18110. https://doi.org/10.1364/OE.15.018103.ADSCrossRefGoogle Scholar
- 133.Bergues, B., Kübel, M., Kling, N. G., Burger, C., & Kling, M. F. (2015). Single-cycle non-sequential double ionization. IEEE Journal of Selected Topics in Quantum Electronics, 21, 1–9. https://doi.org/10.1109/JSTQE.2015.2443976.CrossRefGoogle Scholar
- 134.Giesen, A., et al. (1994). Scalable concept for diode-pumped high-power solid-state lasers. Applied Physics B, 58, 365–372. https://doi.org/10.1007/BF01081875.ADSCrossRefGoogle Scholar
- 135.Giesen, A., & Speiser, J. (2007). Fifteen years of work on thin-disk lasers: Results and scaling laws. IEEE Journal of Selected Topics in Quantum Electronics, 13, 598–609. https://doi.org/10.1109/JSTQE.2007.897180.ADSCrossRefGoogle Scholar
- 136.Hecht, J. (2014). Photonic frontiers: Disk lasers: Higher powers and shorter pulses from thin-disk lasers. Laser Focus World, 50, 89–91. https://digital.laserfocusworld.com/laserfocusworld/201401?pg=91#pg91.
- 137.Schad, S.-S., et al. (2016). Recent development of disk lasers at TRUMPF. Proceedings of SPIE, 9726, p. 972615. https://doi.org/10.1117/12.2212789.
- 138.Schad, S. -S., et al. (2014). Near fundamental mode high-power thin-disk laser. In Proceedings of SPIE, 8959, p. 89590U. http://dx.doi.org/10.1117/12.2046689
- 139.Brons, J., et al. (2016). Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator. Optics Letters, 41, 3567–3570. https://doi.org/10.1364/OL.41.003567.ADSCrossRefGoogle Scholar
- 140.Kanda, N., et al. (2013). High-pulse-energy Yb:YAG thin disk mode-locked oscillator for intra-cavity high harmonic generation. Advanced solid-state lasers congress, AF3A.8. Optical Society of America. https://doi.org/10.1364/ASSL.2013.AF3A.8.
- 141.Eilanlou, A. A., Nabekawa, Y., Kuwata-Gonokami, M., & Midorikawa, K. (2014). Femtosecond laser pulses in a Kerr lens mode-locked thin-disk ring oscillator with an intra-cavity peak power beyond 100 MW. Japanese Journal of Applied Physics, 53, 082701. https://doi.org/10.7567/JJAP.53.082701.ADSCrossRefGoogle Scholar
- 142.Koechner, W. (2006). Properties of solid-state laser materials. Solid-state laser engineering (6th ed., pp. 38–101). New York: Springer. https://doi.org/10.1007/0-387-29338-8_3.CrossRefzbMATHGoogle Scholar
- 143.Wolter, J.-H., Ahmed, M. A., & Graf, T. (2017). Thin-disk laser operation of Ti:sapphire. Optics Letters, 42, 1624–1627. https://doi.org/10.1364/OL.42.001624.ADSCrossRefGoogle Scholar
- 144.Takagi, S., et al. (2012). High-power (over 100 mW) green laser diodes on semipolar 2021 GaN substrates operating at wavelengths beyond 530 nm. Applied Physics Express, 5, 082102. https://stacks.iop.org/1882-0786/5/i=8/a=082102.ADSCrossRefGoogle Scholar
- 145.Yanashima, K., et al. (2012). Long-lifetime true green laser diodes with output power over 50 mW above 525 nm grown on semipolar 2021 GaN substrates. Applied Physics Express, 5, 082103. https://stacks.iop.org/1882-0786/5/i=8/a=082103.ADSCrossRefGoogle Scholar
- 146.Akasaki, I. (2015). Blue light: A fascinating journey (Nobel lecture). Angewandte Chemie International Edition, 54, 7750–7763. https://doi.org/10.1002/anie.201502664.CrossRefGoogle Scholar
- 147.Viana, B. (2006). Yb-doped solid-state lasers and materials. Solid-state lasers and applications (pp. 77–112)., Optical Science and Engineering Boca Raton: CRC Press. https://doi.org/10.1201/9781420005295.ch2.CrossRefGoogle Scholar
- 148.Südmeyer, T., et al. (2009). High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation. Applied Physics B, 97, 281. https://doi.org/10.1007/s00340-009-3700-z.CrossRefGoogle Scholar
- 149.Baer, C. R. E., et al. (2012). Frontiers in passively mode-locked high-power thin disk laser oscillators. Optics Express, 20, 7054–7065. https://doi.org/10.1364/OE.20.007054.ADSCrossRefGoogle Scholar
- 150.Diebold, A., et al. (2013). SESAM mode-locked Yb:CaGdAlO\(_4\) thin disk laser with 62 fs pulse generation. Optics Letters, 38, 3842–3845. https://doi.org/10.1364/OL.38.003842.ADSCrossRefGoogle Scholar
- 151.Zhang, J. et al. (2018). Multi-mW few-cycle mid-infrared continuum spanning from 500 to 2250 cm\(^{-1}\). Light: Science & Applications. https://doi.org/10.1038/lsa.2017.180.ADSCrossRefGoogle Scholar
- 152.Diels, J.-C., & Rudolph, W. (2006). 5 - ultrashort sources i: Fundamentals. Ultrashort laser pulse phenomena (2nd ed., pp. 277–339). Burlington: Academic. https://doi.org/10.1016/B978-012215493-5/50006-9.CrossRefGoogle Scholar
- 153.Weiner, A. M. (2008). Introduction and review. Ultrafast optics (pp. 1–31). New Jercy: Wiley, Inc., https://doi.org/10.1002/9780470473467.ch1.CrossRefGoogle Scholar
- 154.Ducasse, A., Rullière, C., & Couillaud, B. (2005). Methods for the generation of ultrashort laser pulses: Mode-locking. In C. Rullière (Ed.), Femtosecond laser pulses: Principles and experiments (pp. 57–87). New York: Springer. https://doi.org/10.1007/0-387-26674-7_3.CrossRefGoogle Scholar
- 155.Koechner, W. (2006). Mode locking. Solid-state laser engineering (6th ed., pp. 534–586). New York: Springer. https://doi.org/10.1007/0-387-29338-8_10.CrossRefzbMATHGoogle Scholar
- 156.Boyd, R. W. (2008). Chapter 1 - the nonlinear optical susceptibility. Nonlinear optics (3rd ed.). Burlington: Academic. https://doi.org/10.1016/B978-0-12-369470-6.00001-0.CrossRefGoogle Scholar
- 157.Boyd, R. W. (2008). Chapter 4 - the intensity-dependent refractive index. Nonlinear optics (3rd ed., pp. 207–252). Burlington: Academic. https://doi.org/10.1016/B978-0-12-369470-6.00004-6.CrossRefGoogle Scholar
- 158.Sutherland, R . L. (2003). Optical properties of selected third order nonlinear optical materials. Handbook of nonlinear optics (2nd ed.)., Optical science and engineering. Boca Raton: CRC Press. https://doi.org/10.1201/9780203912539.ch8.
- 159.Marburger, J. (1975). Self-focusing theory. Progress in quantum electronics, 4, Part 1, 35–110. https://doi.org/10.1016/0079-6727(75)90003-8.ADSCrossRefGoogle Scholar
- 160.Boyd, R. W. (2008). Chapter 7 - processes resulting from the intensity-dependent refractive index. Nonlinear optics (3rd ed., pp. 329–390). Burlington: Academic. https://doi.org/10.1016/B978-0-12-369470-6.00007-1.CrossRefGoogle Scholar
- 161.Steier, W. H. (1966). The ray packet equivalent of a gaussian light beam. Applied Optics, 5, 1229–1233. https://doi.org/10.1364/AO.5.001229.ADSCrossRefGoogle Scholar
- 162.Herink, G., Jalali, B., Ropers, C., & Solli, D. R. (2016). Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nature Photonics, 10, 321–326. https://doi.org/10.1038/nphoton.2016.38.ADSCrossRefGoogle Scholar
- 163.Svelto, O. (2010). 4 ray and wave propagation through optical media. Principles of lasers (5th ed.). New York: Springer. https://doi.org/10.1007/978-1-4419-1302-9.CrossRefGoogle Scholar
- 164.Oberthaler, M., & Höpfel, R. A. (1993). Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers. Applied Physics Letters, 63, 1017–1019. https://doi.org/10.1063/1.109820.ADSCrossRefGoogle Scholar
- 165.Agrawal, G. (2013). Chapter 4 - self-phase modulation. Nonlinear fiber optics, optics and photonics (5th ed., pp. 87–128). Boston: Academic. https://doi.org/10.1016/B978-0-12-397023-7.00004-8.CrossRefGoogle Scholar
- 166.Bellini, M., & Hänsch, T. W. (2000). Phase-locked white-light continuum pulses: Toward a universal optical frequency-comb synthesizer. Optics Letters, 25, 1049–1051. https://doi.org/10.1364/OL.25.001049.ADSCrossRefGoogle Scholar
- 167.Cundiff, S. T., & Ye, J. (2003). Colloquium: Femtosecond optical frequency combs. Reviews of Modern Physics, 75, 325–342. https://doi.org/10.1103/RevModPhys.75.325.ADSCrossRefGoogle Scholar
- 168.Boyd, R. W. (2008). Nonlinear optics (3rd ed.). Burlington: Academic. https://www.sciencedirect.com/science/book/9780123694706.CrossRefGoogle Scholar
- 169.Stegeman, G. I. (1997). \(\chi ^{(2)}\) cascading: Nonlinear phase shifts. Quantum and semiclassical optics: Journal of the European optical society part B, 9, 139. https://stacks.iop.org/1355-5111/9/i=2/a=003.ADSCrossRefGoogle Scholar
- 170.Wise, F. W., & Moses, J. (2009). Self-focusing and self-defocusing of femtosecond pulses with cascaded quadratic nonlinearities. In R. W. Boyd, S. G. Lukishova, & Y. Shen (Eds.), Self-focusing: Past and present: Fundamentals and prospects (pp. 481–506). New York: Springer. https://doi.org/10.1007/978-0-387-34727-1_20.CrossRefGoogle Scholar
- 171.Diels, J.-C., & Rudolph, W. (2006). 1 - fundamentals. Ultrashort laser pulse phenomena (2nd ed., pp. 1–60). Burlington: Academic. https://doi.org/10.1016/B978-012215493-5/50002-1.CrossRefGoogle Scholar
- 172.Weiner, A. M. (2008). Dispersion and dispersion compensation. Ultrafast optics (pp. 147–197). New Jercy: Wiley, Inc., https://doi.org/10.1002/9780470473467.ch4.CrossRefGoogle Scholar
- 173.Diels, J.-C., & Rudolph, W. (2006). 2 - femtosecond optics. Ultrashort laser pulse phenomena (2nd ed., pp. 61–142). Burlington: Academic. https://doi.org/10.1016/B978-012215493-5/50003-3.CrossRefGoogle Scholar
- 174.Kane, S., & Squier, J. (1995). Grating compensation of third-order material dispersion in the normal dispersion regime: Sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor. IEEE Journal of Quantum Electronics, 31, 2052–2057. https://doi.org/10.1109/3.469287.ADSCrossRefGoogle Scholar
- 175.Szipőcs, R., & Kőházi-Kis, A. (1997). Theory and design of chirped dielectric laser mirrors. Applied Physics B, 65, 115–135. https://doi.org/10.1007/s003400050258.CrossRefGoogle Scholar
- 176.Trubetskov, M. K., Pervak, V., & Tikhonravov, A. V. (2010). Phase optimization of dispersive mirrors based on floating constants. Optics Express, 18, 27613–27618. https://doi.org/10.1364/OE.18.027613.ADSCrossRefGoogle Scholar
- 177.Kärtner, F. X., et al. (2001). Ultrabroadband double-chirped mirror pairs for generation of octave spectra. Journal of the Optical Society of America B, 18, 882–885. https://doi.org/10.1364/JOSAB.18.000882.ADSCrossRefGoogle Scholar
- 178.Pervak, V., Ahmad, I., Trubetskov, M. K., Tikhonravov, A. V., & Krausz, F. (2009). Double-angle multilayer mirrors with smooth dispersion characteristics. Optics Express, 17, 7943–7951. https://doi.org/10.1364/OE.17.007943.ADSCrossRefGoogle Scholar
- 179.Udem, T., Reichert, J., Holzwarth, R., & Hänsch, T. W. (1999). Accurate measurement of large optical frequency differences with a mode-locked laser. Optics Letters, 24, 881–883. https://doi.org/10.1364/OL.24.000881.ADSCrossRefGoogle Scholar
- 180.Briles, T. C., Yost, D. C., Cingöz, A., Ye, J., & Schibli, T. R. (2010). Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth. Optics Express, 18, 9739–9746. https://doi.org/10.1364/OE.18.009739.ADSCrossRefGoogle Scholar
- 181.Reichert, J., Holzwarth, R., Udem, T., & Hänsch, T. (1999). Measuring the frequency of light with mode-locked lasers. Optics Communications, 172, 59–68. https://doi.org/10.1016/S0030-4018(99)00491-5.ADSCrossRefGoogle Scholar
- 182.Cundiff, S. T., Ye, J., & Hall, J. L. (2001). Optical frequency synthesis based on mode-locked lasers. Review of Scientific Instruments, 72, 3749–3771. https://doi.org/10.1063/1.1400144.ADSCrossRefGoogle Scholar
- 183.Boyd, R. W. (2008). Chapter 2 - wave-equation description of nonlinear optical interactions. Nonlinear optics (3rd ed., pp. 69–133). Burlington: Academic. https://doi.org/10.1016/B978-0-12-369470-6.00002-2.CrossRefGoogle Scholar
- 184.Petrov, V. (2015). Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals. Progress in Quantum Electronics, 42, 1–106. https://doi.org/10.1016/j.pquantelec.2015.04.001.ADSMathSciNetCrossRefGoogle Scholar
- 185.Petrov, V. (2012). Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources. Optical Materials, 34, 536–554. https://doi.org/10.1016/j.optmat.2011.03.042.ADSCrossRefGoogle Scholar
- 186.Svelto, O. (2010). 1 introductory concepts. Principles of lasers (5th ed., pp. 1–15). New York: Springer. https://doi.org/10.1007/978-1-4419-1302-9.CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019