Carbon Cycle Implications of Soil Microbial Interactions

  • Kelly I. RaminEmail author
  • Steven D. Allison
Part of the Advances in Environmental Microbiology book series (AEM, volume 6)


The soil environment contains the largest pool of organic carbon on the Earth’s surface, with soil carbon residency and flux controlled by microbial metabolism. Despite the fact that microbial interactions have metabolic implications, these interactions are often overlooked in conceptual models of the soil carbon cycle. Here, we hypothesize that microbial interactions are intrinsically coupled to carbon cycling through eco-evolutionary principles. Interactions drive phenotypic responses that result in allocation pattern shifts and changes in carbon use efficiency. These changes promote alterations in resource availability and community structure, thereby creating selective pressures that contribute to diffuse evolutionary mechanisms. The outcomes then feed back into microbial metabolic operations with consequences for carbon turnover, continuing a feedback loop of microbial interactions, evolutionary processes, and the carbon cycle.


Microbial interactions Carbon cycle Microbial metabolism Soil biofilms Public goods Eco-evolutionary dynamics 


Compliance with Ethical Standards


This study was funded by the US Department of Energy, Office of Science, BER, grant #DE-SC0016410.

Conflict of Interest

Kelly I. Ramin declares that she has no conflict of interest. Steven D. Allison declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Abrudan MI, Smakman F, Grimbergen AJ, Westhoff S, Miller EL, van Wezel GP, Rozen DE (2015) Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc Natl Acad Sci USA 112:1–6CrossRefGoogle Scholar
  2. Ackermann M (2015) A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol 13(8):497–508PubMedCrossRefGoogle Scholar
  3. Allison SD (2005) Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol Lett 8(6):626–635CrossRefGoogle Scholar
  4. Allison SD (2012) A trait-based approach for modelling microbial litter decomposition. Ecol Lett 15(9):1058–1070PubMedCrossRefPubMedCentralGoogle Scholar
  5. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Nat Acad Sci USA 105:11512–11519PubMedCrossRefGoogle Scholar
  6. Allison SD, Wallenstein MD, Bradford MA (2010) Response to warming dependent on microbial physiology. Nat Geosci 3(April):336–340CrossRefGoogle Scholar
  7. Allison SD, Weintraub MN, Gartner TB, Waldrop MP (2011) Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In: Shukla G, Varma A (eds) Soil enzymology, vol 22. Springer, Berlin, pp 229–243CrossRefGoogle Scholar
  8. Allison SD, Lu L, Kent AG, Martiny AC (2014) Extracellular enzyme production and cheating in Pseudomonas fluorescens depend on diffusion rates. Front Microbiol 5(April):169PubMedPubMedCentralGoogle Scholar
  9. Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8(4):260–271PubMedCrossRefGoogle Scholar
  10. Andersson DI, Levin BR (1999) The biological cost of antibiotic resistance. Curr Opin Microbiol 2(5):489–493PubMedCrossRefGoogle Scholar
  11. Baldrian P, Kolařík M, Štursová M, Kopecký J, Valášková V, Větrovský T et al (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6(2):248–258PubMedCrossRefGoogle Scholar
  12. Balser TC, Firestone MK (2005) Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry 73(2):395–415CrossRefGoogle Scholar
  13. Barraclough TG (2015) How do species interactions affect evolutionary dynamics across whole communities? Annu Rev Ecol Evol Syst 46:25–48CrossRefGoogle Scholar
  14. Becker J, Eisenhauer N, Scheu S, Jousset A (2012) Increasing antagonistic interactions cause bacterial communities to collapse at high diversity. Ecol Lett 15(5):468–474PubMedCrossRefGoogle Scholar
  15. Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436(7054):1157–1160PubMedCrossRefGoogle Scholar
  16. Berlemont R, Martiny AC (2013) Phylogenetic distribution of potential cellulases in bacteria. Appl Environ Microbiol 79(5):1545–1554PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bernstein HC, Paulson SD, Carlson RP (2012) Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J Biotechnol 157(1):159–166PubMedCrossRefGoogle Scholar
  18. Bier RL, Bernhardt ES, Boot CM, Graham EB, Hall EK, Lennon JT et al (2015) Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiol Ecol (May), 1–11Google Scholar
  19. Biernaskie JM, Gardner A, West SA (2013) Multicoloured greenbeards, bacteriocin diversity and the rock-paper-scissors game. J Evol Biol 26(10):2081–2094PubMedCrossRefGoogle Scholar
  20. Blanchard AE, Lu T (2015) Bacterial social interactions drive the emergence of differential spatial colony structures. BMC Syst Biol 9:59PubMedPubMedCentralCrossRefGoogle Scholar
  21. Blanchard AE, Celik V, Lu T (2014) Extinction, coexistence, and localized patterns of a bacterial population with contact-dependent inhibition. BMC Syst Biol 8:23PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bleich R, Watrous JD, Dorrestein PC, Bowers AA, Shank EA (2015) Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis. Proc Natl Acad Sci USA 112(10):3086–3091PubMedCrossRefGoogle Scholar
  23. Booth SC, Workentine ML, Wen J, Shaykhutdinov R, Vogel HJ, Ceri H et al (2011) Differences in metabolism between the biofilm and planktonic response to metal stress. J Proteome Res 10(7):3190–3199PubMedCrossRefGoogle Scholar
  24. Boto L (2010) Horizontal gene transfer in evolution: facts and challenges. Proc Biol Sci 277(1683):819–827PubMedCrossRefGoogle Scholar
  25. Bradford MA, Crowther TW (2013) Carbon use efficiency and storage in terrestrial ecosystems. New Phytol 199(1):7–9PubMedCrossRefGoogle Scholar
  26. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85(7):1771–1789CrossRefGoogle Scholar
  27. Bull JJ, Harcombe WR (2009) Population dynamics constrain the cooperative evolution of cross-feeding. PLoS One 4(1):e4115PubMedPubMedCentralCrossRefGoogle Scholar
  28. Burmolle M, Hansen LH, Sorensen SJ (2007) Establishment and early succession of a multispecies biofilm composed of soil bacteria. Microb Ecol 54(2):352–362PubMedCrossRefGoogle Scholar
  29. Burmolle M, Ren D, Bjarnshol T, Sorensen SJ (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22(2):84–91PubMedCrossRefGoogle Scholar
  30. Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD et al (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234CrossRefGoogle Scholar
  31. Carlson RP, Taffs RL (2010) Molecular-level tradeoffs and metabolic adaptation to simultaneous stressors. Curr Opin Biotechnol 21(5):670–676PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chai Y, Chu F, Kolter R, Losick R (2008) Bistability and biofilm formation in Bacillus subtilis. Mol Microbiol 67(2):254–263PubMedCrossRefGoogle Scholar
  33. Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100(Suppl):14555–14561PubMedCrossRefGoogle Scholar
  34. Chapin FI, Matson P, Mooney H (2002) Principles of terrestrial ecosystem ecology. Springer-Verlag, New YorkGoogle Scholar
  35. Chubukov V, Gerosa L, Kochanowski K, Sauer U (2014) Coordination of microbial metabolism. Nat Rev Microbiol 12(5):327–340PubMedCrossRefGoogle Scholar
  36. Cordero OX, Datta MS (2016) Microbial interactions and community assembly at microscales. Curr Opin Microbiol 31(Figure 1):227–234PubMedPubMedCentralCrossRefGoogle Scholar
  37. Cornelis P, Bodilis J (2009) A survey of TonB-dependent receptors in fluorescent pseudomonads. Environ Microbiol Rep 1(4):256–262PubMedCrossRefGoogle Scholar
  38. Cornforth DM, Foster KR (2013) Competition sensing: the social side of bacterial stress responses. Nat Rev Microbiol 11(4):285–293PubMedCrossRefGoogle Scholar
  39. Costa E, Pérez J, Kreft JU (2006) Why is metabolic labour divided in nitrification? Trends Microbiol 14(5):213–219PubMedCrossRefPubMedCentralGoogle Scholar
  40. Crawford JW, Deacon L, Grinev D, Harris JA, Ritz K, Singh BK, Young I (2012) Microbial diversity affects self-organization of the soil-microbe system with consequences for function. J R Soc Interface 9(71):1302–1310PubMedCrossRefGoogle Scholar
  41. Darch SE, West SA, Winzer K, Diggle SP (2012) Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc Natl Acad Sci USA 109(21):8259–8263PubMedCrossRefGoogle Scholar
  42. Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9(5):445–453PubMedCrossRefGoogle Scholar
  43. Dechesne A, Or D, Smets BF (2008) Limited diffusive fluxes of substrate facilitate coexistence of two competing bacterial strains. FEMS Microbiol Ecol 64(1):1–8PubMedCrossRefGoogle Scholar
  44. Decho AW, Frey RL, Ferry JL (2011) Chemical challenges to bacterial AHL signaling in the environment. Chem Rev 111(1):86–99PubMedCrossRefGoogle Scholar
  45. DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13(2):77–81PubMedCrossRefGoogle Scholar
  46. Diggle SP, Gardner A, West SA, Griffin AS (2007a) Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos Trans R Soc Lond Ser B Biol Sci 362(1483):1241–1249CrossRefGoogle Scholar
  47. Diggle SP, Griffin AS, Campbell GS, West SA (2007b) Cooperation and conflict in quorum-sensing bacterial populations. Nature 450(7168):411–414Google Scholar
  48. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890PubMedPubMedCentralCrossRefGoogle Scholar
  49. Dubnau D, Losick R (2006) Bistability in bacteria. Mol Microbiol 61(3):564–572PubMedCrossRefGoogle Scholar
  50. Dumas Z, Ross-Gillespie A, Kummerli R (2013) Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proc Biol Sci 280(1764):20131055PubMedPubMedCentralCrossRefGoogle Scholar
  51. Dykes GA, Hastings JW (1998) Fitness costs associated with class IIa bacteriocin resistance in Listeria monocytogenes B73. Lett Appl Microbiol 26(1):5–8PubMedCrossRefGoogle Scholar
  52. Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38(6):665–703PubMedCrossRefGoogle Scholar
  53. Elser J (2006) Biological stoichiometry: a chemical bridge between ecosystem ecology and evolutionary biology. Am Nat 168(Suppl):S25–S35PubMedCrossRefGoogle Scholar
  54. Ernebjerg M, Kishony R (2012) Distinct growth strategies of soil bacteria as revealed by large-scale colony tracking. Appl Environ Microbiol 78(5):1345–1352PubMedPubMedCentralCrossRefGoogle Scholar
  55. Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17(4):177–183CrossRefGoogle Scholar
  56. Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science (New York, NY) 320(5879):1034–1039CrossRefGoogle Scholar
  57. Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Investig 112(9):1291–1299PubMedCrossRefGoogle Scholar
  58. Fiegna F, Moreno-Letelier A, Bell T, Barraclough TG (2015a) Evolution of species interactions determines microbial community productivity in new environments. ISME J 9(5):1235–1245Google Scholar
  59. Fiegna F, Scheuerl T, Moreno-Letelier A, Bell T, Barraclough TG (2015b) Saturating effects of species diversity on life-history evolution in bacteria. Proc Biol Sci 282(1815):20151794Google Scholar
  60. Flemming H, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633PubMedCrossRefGoogle Scholar
  61. Folse HJ, Allison SD (2012) Cooperation, competition, and coalitions in enzyme-producing microbes: social evolution and nutrient depolymerization rates. Front Microbiol 3(September):338PubMedPubMedCentralGoogle Scholar
  62. Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS, Kupiec M et al (2011) Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun 2:589PubMedCrossRefGoogle Scholar
  63. Fussmann GF, Loreau M, Abrams PA (2007) Eco-evolutionary dynamics of communities and ecosystems. Funct Ecol 21(3):465–477. CrossRefGoogle Scholar
  64. Galet J, Deveau A, Hôtel L, Leblond P, Frey-Klett P, Aigle B (2014) Gluconic acid-producing Pseudomonas sp. prevent γ-actinorhodin biosynthesis by Streptomyces coelicolor A3(2). Arch Microbiol 3:619–627. CrossRefGoogle Scholar
  65. Galet J, Deveau A, Hôtel L, Frey-Klett P, Leblond P, Aigle B (2015) Pseudomonas fluorescens Pirates both Ferrioxamine and Ferricoelichelin Siderophores from Streptomyces ambofaciens. Appl Environ Microbiol 81(9):3132–3141PubMedPubMedCentralCrossRefGoogle Scholar
  66. Garbeva P, de Boer W (2009) Inter-specific interactions between carbon-limited soil bacteria affect behavior and gene expression. Microb Ecol 58(1):36–46PubMedCrossRefGoogle Scholar
  67. Garbeva P, Silby MW, Raaijmakers JM, Levy SB, De Boer W (2011) Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. ISME J 5(6):973–985PubMedPubMedCentralCrossRefGoogle Scholar
  68. Giovannoni SJ, Thrash JC, Temperton B (2014) Implications of streamlining theory for microbial ecology. ISME J 8(8):1553–1565PubMedPubMedCentralCrossRefGoogle Scholar
  69. Goldfarb KC, Karaoz U, Hanson CA, Santee CA, Bradford MA, Treseder KK et al (2011) Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol 2(May):94PubMedPubMedCentralGoogle Scholar
  70. Hahn AS, Konwar KM, Louca S, Hanson NW, Hallam SJ (2016) The information science of microbial ecology. Curr Opin Microbiol 31:209–216PubMedCrossRefGoogle Scholar
  71. Hamilton WD (1964) The genetical evolution of social behaviour. I. J Theor Biol 7(1):1–16PubMedCrossRefGoogle Scholar
  72. Haq IU, Graupner K, Nazir R, van Elsas JD (2014) The genome of the fungal-Interactive soil bacterium burkholderia terrae BS001-a plethora of outstanding interactive capabilities unveiled. Genome Biol Evol 6(7):1652–1668PubMedPubMedCentralCrossRefGoogle Scholar
  73. Harcombe W (2010) Novel cooperation experimentally evolved between species. Evolution 64(7):2166–2172PubMedGoogle Scholar
  74. Harcombe WR, Riehl WJ, Dukovski I, Granger BR, Betts A, Lang AH et al (2014) Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep 7(4):1104–1115PubMedPubMedCentralCrossRefGoogle Scholar
  75. Harder W, Dijkhuizen L (1983) Physiological responses to nutrient limitation. Annu Rev Microbiol 37:1–23PubMedCrossRefGoogle Scholar
  76. Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65(8):3710–3713PubMedPubMedCentralGoogle Scholar
  77. Hense BA, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft JU (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5(3):230–239PubMedCrossRefGoogle Scholar
  78. Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8(1):15–25PubMedPubMedCentralCrossRefGoogle Scholar
  79. Huang Y, Zeng Y, Yu Z, Zhang J, Feng H, Lin X (2013) In silico and experimental methods revealed highly diverse bacteria with quorum sensing and aromatics biodegradation systems—a potential broad application on bioremediation. Bioresour Technol 148:311–316PubMedCrossRefGoogle Scholar
  80. Jass J, Roberts SK, Lappin-Scott HM (2002) Microbes and enzymes in biofilms. In: Burns RG, Dick RD (eds) Enzymes in the environment: activity, ecology, and applications, 1st edn. Marcel Dekker, New York, pp 307–326Google Scholar
  81. Jauri PV, Bakker MG, Salomon CE, Kinkel LL (2013) Subinhibitory antibiotic concentrations mediate nutrient use and competition among soil Streptomyces. PLoS One 8(12):e81064CrossRefGoogle Scholar
  82. Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236(2):163–173PubMedCrossRefGoogle Scholar
  83. Jobbágy EG, Jackson RB (2000) the vertical distribution of soil organic carbon and its. Ecol Appl 10(2):423–436CrossRefGoogle Scholar
  84. Johnson MTJ, Stinchcombe JR (2007) An emerging synthesis between community ecology and evolutionary biology. Trends Ecol Evol 22(5):250–257PubMedCrossRefGoogle Scholar
  85. Jousset A, Schmid B, Scheu S, Eisenhauer N (2011) Genotypic richness and dissimilarity opposingly affect ecosystem functioning. Ecol Lett 14(6):537–545PubMedCrossRefGoogle Scholar
  86. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31(2):224–245PubMedCrossRefGoogle Scholar
  87. Kelsic ED, Zhao J, Vetsigian K, Kishony R (2015) Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature 521(7553):516–519PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kerr B, Riley MA, Feldman MW, Bohannan BJM (2002) Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418(6894):171–174PubMedCrossRefGoogle Scholar
  89. Khandelwal RA, Olivier BG, Röling WFM, Teusink B, Bruggeman FJ (2013) Community flux balance analysis for microbial consortia at balanced growth. PLoS One 8(5):e64567PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kim M, Or D (2015) Individual-based model of microbial life on hydrated rough soil surfaces. PLoS One:1–32Google Scholar
  91. Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF (2008) Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc Natl Acad Sci USA 105(47):18188–18193PubMedCrossRefGoogle Scholar
  92. Kim W, Racimo F, Schluter J, Levy SB, Foster KR (2014) Importance of positioning for microbial evolution. Proc Natl Acad Sci USA 111(16):E1639–E1647PubMedCrossRefGoogle Scholar
  93. Kinkel LL, Schlatter DC, Xiao K, Baines AD (2014) Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME J 8(2):249–256PubMedCrossRefGoogle Scholar
  94. Klitgord N, Segre D (2011) Ecosystems biology of microbial metabolism. Curr Opin Biotechnol 22(4):541–546PubMedCrossRefGoogle Scholar
  95. Koch AL (1985) The macroeconomics of bacterial growth. In: Fletcher M, Floodgate GD (eds) Bacteria in their natural environments, vol 16. Academic Press, London, pp 1–42Google Scholar
  96. Krug D, Zurek G, Revermann O, Vos M, Velicer GJ, Muller R (2008) Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Appl Environ Microbiol 74(10):3058–3068PubMedPubMedCentralCrossRefGoogle Scholar
  97. Langenheder S, Bulling MT, Solan M, Prosser JI (2010) Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity. PLoS One 5(5):e10834PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, Barraclough TG (2012) Species interactions alter evolutionary responses to a novel environment. PLoS Biol 10(5):e1001330PubMedPubMedCentralCrossRefGoogle Scholar
  99. Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 182(24):6921–6926PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9(2):119–130PubMedCrossRefGoogle Scholar
  101. Liang C, Cheng G, Wixon DL, Balser TC (2011) An Absorbing Markov Chain approach to understanding the microbial role in soil carbon stabilization. Biogeochemistry 106(3):303–309CrossRefGoogle Scholar
  102. Lipson DA (2015) The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front Microbiol 6(June):1–5Google Scholar
  103. Lipson DA, Monson RK, Schmidt SK, Weintraub MN (2009) The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest. Biogeochemistry 95(1):23–35CrossRefGoogle Scholar
  104. Little AE, Robinson CJ, Peterson SB, Raffa KF, Handelsman J (2008) Rules of engagement: interspecies interactions that regulate microbial communities. Annu Rev Microbiol 62:375–401PubMedCrossRefGoogle Scholar
  105. Lopez D, Fischbach MA, Chu F, Losick R, Kolter R (2009) Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc Natl Acad Sci USA 106(1):280–285PubMedCrossRefGoogle Scholar
  106. Lv G, Pearce CW, Gleason A, Liao L, MacWilliams MP, Li Z (2013) Influence of montmorillonite on antimicrobial activity of tetracycline and ciprofloxacin. J Asian Earth Sci 77:281–286CrossRefGoogle Scholar
  107. Madsen JS, Burmølle M, Hansen LH, Sørensen SJ (2012) The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 65(2):183–195PubMedCrossRefGoogle Scholar
  108. Mah TFC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39PubMedCrossRefGoogle Scholar
  109. Majeed H, Lampert A, Ghazaryan L, Gillor O (2013) The weak shall inherit: bacteriocin-mediated interactions in bacterial populations. PLoS One 8(5):e63837PubMedPubMedCentralCrossRefGoogle Scholar
  110. Martiny AC, Treseder K, Pusch G (2013) Phylogenetic conservatism of functional traits in microorganisms. ISME J 7(4):830–838PubMedCrossRefGoogle Scholar
  111. Martiny JBH, Jones SE, Lennon JT, Martiny AC (2015) Microbiomes in light of traits: a phylogenetic perspective. Science (New York, NY) 350(6261):aac9323CrossRefGoogle Scholar
  112. Matsumoto Y, Murakami Y, Tsuru S, Ying BW, Yomo T (2013) Growth rate-coordinated transcriptome reorganization in bacteria. BMC Genomics 14:808PubMedPubMedCentralCrossRefGoogle Scholar
  113. Matulich KL, Martiny JBH (2014) Microbial composition alters the response of litter decomposition to environmental change. Ecology 96(1):140620135402001Google Scholar
  114. Matz C, Kjelleberg S (2005) Off the hook—how bacteria survive protozoan grazing. Trends Microbiol 13(7):302–307PubMedCrossRefGoogle Scholar
  115. McGinty SÉM, Lehmann L, Brown SP, Rankin DJ (2013) The interplay between relatedness and horizontal gene transfer drives the evolution of plasmid-carried public goods. Proc R Soc B 280:1–8Google Scholar
  116. McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schink B et al (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72PubMedCrossRefGoogle Scholar
  117. Miethke M, Kraushaar T, Marahiel MA (2013) Uptake of xenosiderophores in Bacillus subtilis occurs with high affinity and enhances the folding stabilities of substrate binding proteins. FEBS Lett 587(2):206–213PubMedCrossRefGoogle Scholar
  118. Mitri S, Foster KR (2013) The genotypic view of social interactions in microbial communities. Annu Rev Genet 47:247–273PubMedCrossRefGoogle Scholar
  119. Mitri S, Xavier JB, Foster KR (2011) Social evolution in multispecies biofilms. Proc Natl Acad Sci USA 108(Suppl):10839–10846PubMedCrossRefGoogle Scholar
  120. Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14(3):255–261PubMedCrossRefGoogle Scholar
  121. Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76(2):151–174CrossRefGoogle Scholar
  122. Morris JJ (2015) Black Queen evolution: the role of leakiness in structuring microbial communities. Trends Genet 31(8):475–482PubMedCrossRefGoogle Scholar
  123. Morris JJ, Lenski RE, Zinser ER, Loss AG (2012) The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. MBio 3(2):e00036–e00012PubMedPubMedCentralCrossRefGoogle Scholar
  124. Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C (2013) Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 37(3):384–406PubMedCrossRefGoogle Scholar
  125. Mouillot D, Villéger S, Scherer-Lorenzen M, Mason NWH (2011) Functional structure of biological communities predicts ecosystem multifunctionality. PLoS One 6(3):e17476PubMedPubMedCentralCrossRefGoogle Scholar
  126. Müller S, Strack SN, Hoefler BC, Straight P, Kearns DB, Kirby JR (2014) Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus. Appl Environ Microbiol 80(18):5603–5610PubMedPubMedCentralCrossRefGoogle Scholar
  127. Murren CJ, Auld JR, Callahan H, Ghalambor CK, Handelsman CA, Heskel MA et al (2015) Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115(November 2014):293–301PubMedPubMedCentralCrossRefGoogle Scholar
  128. Nadell CD, Foster KR, Xavier JB (2010) Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput Biol 6(3):e1000716PubMedPubMedCentralCrossRefGoogle Scholar
  129. Nadell CD, Drescher K, Foster KR (2016) Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol 14(9):589–600PubMedCrossRefGoogle Scholar
  130. Narisawa N, Haruta S, Arai H, Ishii M, Igarashi Y (2008) Coexistence of antibiotic-producing and antibiotic-sensitive bacteria in biofilms is mediated by resistant bacteria. Appl Environ Microbiol 74(12):3887–3894PubMedPubMedCentralCrossRefGoogle Scholar
  131. Neill C, Gignoux J (2006) Soil organic matter decomposition driven by microbial growth: a simple model for a complex network of interactions. Soil Biol Biochem 38(4):803–811CrossRefGoogle Scholar
  132. Nesme J, Achouak W, Agathos SN, Bailey M, Baldrian P, Heulin T et al (2016) Back to the future of soil metagenomics. Front Microbiol 7(February):1–6Google Scholar
  133. Netzker T, Fischer J, Weber J, Mattern DJ, König CC, Valiante V et al (2015) Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol 6(April):1–14Google Scholar
  134. Nogueira T, Rankin DJ, Touchon M, Taddei F, Brown SP, Rocha EPC (2009) Horizontal gene transfer of the secretome drives the evolution of bacterial cooperation and virulence. Curr Biol 19(20):1683–1691PubMedPubMedCentralCrossRefGoogle Scholar
  135. Nogueira T, Touchon M, Rocha EPC (2012) Rapid evolution of the sequences and gene repertoires of secreted proteins in bacteria. PLoS One 7(11):e49403PubMedPubMedCentralCrossRefGoogle Scholar
  136. Norman A, Hansen LH, Sørensen SJ (2009) Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond Ser B Biol Sci 364(1527):2275–2289CrossRefGoogle Scholar
  137. O’Donnell AG, Young IM, Rushton SP, Shirley MD, Crawford JW, O’Donnell AG et al (2007) Visualization, modelling and prediction in soil microbiology. Nat Rev Microbiol 5(9):689–699PubMedCrossRefGoogle Scholar
  138. Oberhardt MA, Palsson BØ, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5(320):320PubMedPubMedCentralGoogle Scholar
  139. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304PubMedCrossRefGoogle Scholar
  140. Oliveira NM, Niehus R, Foster KR (2014) Evolutionary limits to cooperation in microbial communities. Proc Natl Acad Sci USA 111(50):201412673CrossRefGoogle Scholar
  141. Pande S, Merker H, Bohl K, Reichelt M, Schuster S, de Figueiredo LF et al (2014) Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J 8(5):953–962PubMedCrossRefGoogle Scholar
  142. Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13(1):27–33PubMedCrossRefGoogle Scholar
  143. Pfeiffer T, Bonhoeffer S (2004) Evolution of cross-feeding in microbial populations. Am Nat 163(6):E126–E135PubMedCrossRefGoogle Scholar
  144. Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292(5516):504–507PubMedCrossRefGoogle Scholar
  145. Pion M, Bshary R, Bindschedler S, Filippidou S, Wick LY, Job D, Junier P (2013) Gains of bacterial flagellar motility in a fungal world. Appl Environ Microbiol 79(22):6862–6867PubMedPubMedCentralCrossRefGoogle Scholar
  146. Poltak SR, Cooper VS (2011) Ecological succession in long-term experimentally evolved biofilms produces synergistic communities. ISME J 5(3):369–378PubMedCrossRefGoogle Scholar
  147. Ponomarova O, Patil KR (2015) Metabolic interactions in microbial communities: untangling the Gordian knot. Curr Opin Microbiol 27:37–44PubMedCrossRefGoogle Scholar
  148. Popat R, Pollitt EJG, Harrison F, Naghra H, Hong KW, Chan KG et al (2015) Conflict of interest and signal interference lead to the breakdown of honest signaling. Evolution 69(9):2371–2383PubMedPubMedCentralCrossRefGoogle Scholar
  149. Powers MJ, Sanabria-Valentín E, Bowers AA, Shank EA (2015) Inhibition of cell differentiation in bacillus subtilis by pseudomonas protegens. J Bacteriol 197(13):02535–02514CrossRefGoogle Scholar
  150. Prasad S, Manasa P, Buddhi S, Sing SM, Shivaji S (2011) Antagonistic interaction networks among bacteria from a cold soil environment. FEMS Microbiol Ecol 78(2):376–385PubMedCrossRefGoogle Scholar
  151. Prigent-combaret C, Vidal O, Dorel C, Lejeune P (1999) Abiotic surface sensing and biofilm-dependent regulation of gene expression in escherichia coli. J Bacteriol 181(19):5993–6002PubMedPubMedCentralGoogle Scholar
  152. Prosser JI (2012) Ecosystem processes and interactions in a morass of diversity. FEMS Microbiol Ecol 81(3):507–519PubMedCrossRefGoogle Scholar
  153. Rainey PB, Desprat N, Driscoll WW, Zhang XX (2014) Microbes are not bound by sociobiology: response to Kümmerli and Ross-Gillespie (2013). Evolution 68(11):3344–3355PubMedCrossRefGoogle Scholar
  154. Rankin DJ, Rocha EPC, Brown SP (2011) What traits are carried on mobile genetic elements, and why? Heredity 106(1):1–10PubMedCrossRefGoogle Scholar
  155. Ratcliff WC, Hoverman M, Travisano M, Denison RF (2013) Disentangling direct and indirect fitness effects of microbial dormancy. Am Nat 182(2):147–156PubMedCrossRefGoogle Scholar
  156. Raynaud X, Nunan N (2014) Spatial ecology of bacteria at the microscale in soil. PLoS One 9(1):e87217PubMedPubMedCentralCrossRefGoogle Scholar
  157. Reed HE, Martiny JBH (2007) Testing the functional significance of microbial composition in natural communities. FEMS Microbiol Ecol 62:161–170PubMedCrossRefGoogle Scholar
  158. Ren D, Madsen JS, Sørensen SJ, Burmølle M (2014) High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME J 9(1):81–89PubMedPubMedCentralCrossRefGoogle Scholar
  159. Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9(7):670–675PubMedPubMedCentralCrossRefGoogle Scholar
  160. Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl Environ Microbiol 58(4):1284–1291PubMedPubMedCentralGoogle Scholar
  161. Ross-Gillespie A, Gardner A, West SA, Griffin AS (2007) Frequency dependence and cooperation: theory and a test with bacteria. Am Nat 170(3):331–342PubMedCrossRefGoogle Scholar
  162. Ruhe ZC, Low DA, Hayes CS (2013) Bacterial contact-dependent growth inhibition. Trends Microbiol 21(5):230–237PubMedPubMedCentralCrossRefGoogle Scholar
  163. Sauer K, Camper AK (2001) Characterization of phenotypic changes in pseudomonas putida in response to surface-associated growth society. J Bacteriol 183(22):6579–6589PubMedPubMedCentralCrossRefGoogle Scholar
  164. Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:1–11CrossRefGoogle Scholar
  165. Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its Implications for ecosystem function. Ecology 88(6):1386–1394PubMedCrossRefPubMedCentralGoogle Scholar
  166. Schmidt TM, Konopka AE (2009) Physiological and ecological adaptations of slow-growing, heterotrophic microbes and consequences for cultivation. In: Epstein SS (ed) Uncultivated microorganisms. Springer, Berlin, pp 257–276CrossRefGoogle Scholar
  167. Schoener TW (2011) The newest synthesis: understanding ecological dynamics. Science 331(January):426–429PubMedCrossRefGoogle Scholar
  168. Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. Society 185(7):2066–2079Google Scholar
  169. Seneviratne G (2015) Signal transduction in edaphic ecosystems governs sustainability. Agric Ecosyst Environ 210:47–49CrossRefGoogle Scholar
  170. Shank EA, Klepac-Ceraj V, Collado-Torres L, Powers GE, Losick R, Kolter R (2011) Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus. Proc Natl Acad Sci USA 108(48):E1236–E1243PubMedCrossRefGoogle Scholar
  171. Sinsabaugh RL, Shah JJF, Findlay SG, Kuehn KA, Moorhead DL (2015) Scaling microbial biomass, metabolism and resource supply. Biogeochemistry 122(2–3):175–190CrossRefGoogle Scholar
  172. Smith DR, Chapman MR (2010) Economical evolution: microbes reduce the synthetic cost of extracellular proteins. MBio 1(3):28–32CrossRefGoogle Scholar
  173. Šnajdr J, Dobiášová P, Větrovský T, Valášková V, Alawi A, Boddy L, Baldrian P (2011) Saprotrophic basidiomycete mycelia and their interspecific interactions affect the spatial distribution of extracellular enzymes in soil. FEMS Microbiol Ecol 78(1):80–90PubMedCrossRefGoogle Scholar
  174. Solden L, Lloyd K, Wrighton K (2016) The bright side of microbial dark matter: lessons learned from the uncultivated majority. Curr Opin Microbiol 31:217–226PubMedCrossRefGoogle Scholar
  175. Sorensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3(9):700–710PubMedCrossRefGoogle Scholar
  176. Stevenson BS, Schmidt TM (2004) Life history implications of rRNA gene copy number in escherichia coli. Appl Environ Microbiol 70(11):6670–6677PubMedPubMedCentralCrossRefGoogle Scholar
  177. Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185(5):1485–1491PubMedPubMedCentralCrossRefGoogle Scholar
  178. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6(3):199–210PubMedCrossRefGoogle Scholar
  179. Straight PD, Kolter R (2009) Interspecies chemical communication in bacterial development. Annu Rev Microbiol 63:99–118PubMedCrossRefGoogle Scholar
  180. Straight PD, Willey JM, Kolter R (2006) Interactions between Streptomyces coelicolor and Bacillus subtilis: role of surfactants in raising aerial structures. J Bacteriol 188(13):4918–4925PubMedPubMedCentralCrossRefGoogle Scholar
  181. Strauss SY, Sahli H, Conner JK (2005) Toward a more trait-centered approach to diffuse (co)evolution. New Phytol 165(1):81–90PubMedCrossRefGoogle Scholar
  182. Strickland MS, McCulley RL, Bradford M (2013) The effect of a quorum-quenching enzyme on leaf litter decomposition. Soil Biol Biochem 64:65–67CrossRefGoogle Scholar
  183. Subbiah M, Mitchell SM, Ullman JL, Call DR (2011) Beta-lactams and florfenicol antibiotics remain bioactive in soils while ciprofloxacin, neomycin, and tetracycline are neutralized. Appl Environ Microbiol 77(20):7255–7260PubMedPubMedCentralCrossRefGoogle Scholar
  184. Szczepaniak Z, Cyplik P, Juzwa W, Czarny J, Staninska J, Piotrowska-Cyplik A (2015) Antibacterial effect of the Trichoderma viride fungi on soil microbiome during PAH’s biodegradation. Int Biodeter Biodegr 104:170–177CrossRefGoogle Scholar
  185. Teixeira De Mattos MJ, Neijssel OM (1997) Bioenergetic consequences of microbial adaptation to low-nutrient environments. J Biotechnol 59(1–2):117–126PubMedCrossRefGoogle Scholar
  186. Tilman D (1981) Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62(3):802–815CrossRefGoogle Scholar
  187. Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294(26):843–845Google Scholar
  188. Tiunov AV, Scheu S (2005) Facilitative interactions rather than resource partitioning drive diversity-functioning relationships in laboratory fungal communities. Ecol Lett 8(6):618–625CrossRefGoogle Scholar
  189. Tolonen AC, Cerisy T, El-Sayyed H, Boutard M, Salanoubat M, Church GM (2014) Fungal lysis by a soil bacterium fermenting cellulose. Environ Microbiol 17:2618–2627PubMedCrossRefGoogle Scholar
  190. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P et al (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5(1):e1000344PubMedPubMedCentralCrossRefGoogle Scholar
  191. Travisano M, Velicer GJ (2004) Strategies of microbial cheater control. Trends Microbiol 12(2):72–78PubMedCrossRefPubMedCentralGoogle Scholar
  192. Traxler MF, Kolter R (2015) Natural products in soil microbe interactions and evolution. Nat Prod Rep 32:956–970PubMedCrossRefGoogle Scholar
  193. Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R (2012) Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol Microbiol 86(3):628–644PubMedPubMedCentralCrossRefGoogle Scholar
  194. Turcotte MM, Corrin MSC, Johnson MTJ (2012) Adaptive evolution in ecological communities. PLoS Biol 10(5):1–6CrossRefGoogle Scholar
  195. Tyc O, van den Berg M, Gerards S, van Veen JA, Raaijmakers JM, de Boer W, Garbeva P (2014) Impact of interspecific interactions on antimicrobial activity among soil bacteria. Front Microbiol 5(October):1–10Google Scholar
  196. Tyc O, Wolf AB, Garbeva P (2015) The effect of phylogenetically different bacteria on the fitness of pseudomonas fluorescens in sand microcosms. PLoS One 10(3):e0119838PubMedPubMedCentralCrossRefGoogle Scholar
  197. Van der Wal A, Geydan TD, Kuyper TW, De Boer W (2013) A thready affair: linking Fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiol Rev 37(4):477–494PubMedCrossRefGoogle Scholar
  198. van Elsas JD, Bailey MJ (2002) The ecology of transfer of mobile genetic elements. FEMS Microb Ecol 42:187–197CrossRefGoogle Scholar
  199. Vetsigian K, Jajoo R, Kishony R (2011) Structure and evolution of Streptomyces interaction networks in soil and in silico. PLoS Biol 9(10):1–12CrossRefGoogle Scholar
  200. Vieira-Silva S, Rocha EPC (2010) The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet 6(1):e1000808PubMedPubMedCentralCrossRefGoogle Scholar
  201. Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14(7):2535–2554PubMedPubMedCentralCrossRefGoogle Scholar
  202. Wang Y, Leadbetter JR (2005) Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils. Appl Environ Microbiol 71(3):1291–1299PubMedPubMedCentralCrossRefGoogle Scholar
  203. Warmink JA, Van Elsas JD (2009) Migratory response of soil bacteria to Lyophyllum sp. strain Karsten In soil microcosms. Appl Environ Microbiol 75(9):2820–2830PubMedPubMedCentralCrossRefGoogle Scholar
  204. Warmink JA, Nazir R, Corten B, van Elsas JD (2011) Hitchhikers on the fungal highway: the helper effect for bacterial migration via fungal hyphae. Soil Biol Biochem 43(4):760–765CrossRefGoogle Scholar
  205. West SA, Diggle SP, Buckling A, Gardner A, Griffin AS (2007) The social lives of microbes. Annu Rev Ecol Evol Syst 38(1):53–77CrossRefGoogle Scholar
  206. Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT et al (2016) Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J 10(11):2557–2568PubMedPubMedCentralCrossRefGoogle Scholar
  207. Xavier KB, Bassler BL (2005) Interference with AI-2-mediated bacterial cell–cell communication. Nature 437(7059):750–753PubMedPubMedCentralCrossRefGoogle Scholar
  208. Xavier JB, Foster KR (2007) Cooperation and conflict in microbial biofilms. Proc Natl Acad Sci USA 104(3):876–881PubMedCrossRefGoogle Scholar
  209. Young IM, Crawford JW (2004) Interactions and self-organization in the soil-microbe complex. Science 304(5677):1634–1637PubMedCrossRefGoogle Scholar
  210. Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L (2012) Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct 7(1):18PubMedPubMedCentralCrossRefGoogle Scholar
  211. Zhang M, Pereira e Silva Mde C, De Mares MC, Van Elsas JD (2014) The mycosphere constitutes an arena for horizontal gene transfer with strong evolutionary implications for bacterial-fungal interactions. FEMS Microbiol Ecol 89(3):516–526PubMedCrossRefGoogle Scholar
  212. Zhuang X, Gao J, Ma A, Fu S, Zhuang G (2013) Bioactive molecules in soil ecosystems: masters of the underground. Int J Mol Sci 14(5):8841–8868PubMedPubMedCentralCrossRefGoogle Scholar
  213. Zimmerman AE, Martiny AC, Allison SD (2013) Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes. ISME J 7(6):1187–1199PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of California, IrvineIrvineUSA

Personalised recommendations