Advertisement

Introduction to Learning Automata Models

  • Alireza RezvanianEmail author
  • Behnaz Moradabadi
  • Mina Ghavipour
  • Mohammad Mehdi Daliri Khomami
  • Mohammad Reza Meybodi
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 820)

Abstract

Learning automaton (LA) as one of artificial intelligence techniques is a stochastic model operating in the framework of the reinforcement learning. LA has been found to be a useful tool for solving many complex and real world problems where a large amount of uncertainty exists or there is no access to the whole information regarding the environment. In this chapter, learning automaton and suitable variants of LA models for distributed and decentralized environments (e.g., social networks) will be introduced. Also, recent models and applications of learning automata will be presented.

References

  1. Adinehvand K, Sardari D, Hosntalab M, Pouladian M (2017) An efficient multistage segmentation method for accurate hard exudates and lesion detection in digital retinal images. J Intell Fuzzy Syst 33:1639–1649.  https://doi.org/10.3233/JIFS-17199CrossRefGoogle Scholar
  2. Agache M, Oommen BJ (2002) Generalized pursuit learning schemes: new families of continuous and discretized learning automata. IEEE Trans Syst Man Cybern Part B Cybern 32:738–749.  https://doi.org/10.1109/TSMCB.2002.1049608CrossRefGoogle Scholar
  3. Ahangaran M, Taghizadeh N, Beigy H et al (2017) Associative cellular learning automata and its applications. Appl Soft Comput J 53:1–18.  https://doi.org/10.1016/j.asoc.2016.12.006CrossRefGoogle Scholar
  4. Akbari Torkestani J, Meybodi MR (2010) Learning automata-based algorithms for finding minimum weakly connected dominating set in stochastic graphs. Int J Uncertain Fuzziness Knowl-Based Syst 18:721–758.  https://doi.org/10.1142/S0218488510006775MathSciNetCrossRefzbMATHGoogle Scholar
  5. Akbari Torkestani J, Meybodi MR (2012) A learning automata-based heuristic algorithm for solving the minimum spanning tree problem in stochastic graphs. J Supercomput 59:1035–1054.  https://doi.org/10.1007/s11227-010-0484-1CrossRefGoogle Scholar
  6. Aldrees M, Ykhlef M (2014) A seeding cellular learning automata approach for viral marketing in social network. In: Proceedings of the 16th international conference on information integration and web-based applications & services—iiWAS’14. ACM Press, New York, pp 59–63Google Scholar
  7. Amirazodi N, Saghiri AM, Meybodi M (2018) An adaptive algorithm for super-peer selection considering peer’s capacity in mobile peer-to-peer networks based on learning automata. Peer-to-Peer Netw Appl 11:74–89.  https://doi.org/10.1007/s12083-016-0503-yCrossRefGoogle Scholar
  8. Amiri F, Yazdani N, Faili H, Rezvanian A (2013) A novel community detection algorithm for privacy preservation in social networks. In: Abraham A (ed), pp 443–450Google Scholar
  9. Aso H, Kimura M (1979) Absolute expediency of learning automata. Inf Sci (Ny) 17:91–112.  https://doi.org/10.1016/0020-0255(79)90034-3MathSciNetCrossRefzbMATHGoogle Scholar
  10. Baba N (1983) The absolutely expedient nonlinear reinforcement schemes under the unknown multiteacher environment. IEEE Trans Syst Man Cybern SMC-13:100–108.  https://doi.org/10.1109/tsmc.1983.6313039MathSciNetCrossRefGoogle Scholar
  11. Beheshtifard Z, Meybodi MR (2018) An adaptive channel assignment in wireless mesh network: the learning automata approach. Comput Electr Eng 72:79–91.  https://doi.org/10.1016/j.compeleceng.2018.09.004CrossRefGoogle Scholar
  12. Beigy H, Meybodi MR (2006) Utilizing distributed learning automata to solve stochastic shortest path problems. Int J Uncertain Fuzziness Knowl-Based Syst 14:591–615.  https://doi.org/10.1142/S0218488506004217MathSciNetCrossRefzbMATHGoogle Scholar
  13. Beigy H, Meybodi MRR (2010) Cellular learning automata with multiple learning automata in each cell and its applications. IEEE Trans Syst Man Cybern Part B 40:54–65.  https://doi.org/10.1109/TSMCB.2009.2030786CrossRefGoogle Scholar
  14. Billard EA (1994) Instabilities in learning automata playing games with delayed information. In: Proceedings of IEEE international conference on systems, man and cybernetics. IEEE, pp 1160–1165Google Scholar
  15. Billard EA (1996) Stability of adaptive search in multi-level games under delayed information. IEEE Trans Syst Man, Cybern Part A Systems Humans 26:231–240.  https://doi.org/10.1109/3468.485749CrossRefGoogle Scholar
  16. Bushehrian O, Nejad SE (2017) Health-care pervasive environments: a CLA based trust management, pp 247–257Google Scholar
  17. Christensen JPR, Oommen BJ (1990) Epsilon-optimal stubborn learning mechanisms. IEEE Trans Syst Man Cybern 20:1209–1216.  https://doi.org/10.1109/21.59983CrossRefGoogle Scholar
  18. Daliri Khomami MM, Haeri MA, Meybodi MR, Saghiri AM (2017) An algorithm for weighted positive influence dominating set based on learning automata. In: 2017 IEEE 4th international conference on knowledge-based engineering and innovation (KBEI). IEEE, pp 0734–0740Google Scholar
  19. Daliri Khomami MM, Rezvanian A, Bagherpour N, Meybodi MR (2018) Minimum positive influence dominating set and its application in influence maximization: a learning automata approach. Appl Intell 48:570–593.  https://doi.org/10.1007/s10489-017-0987-zCrossRefGoogle Scholar
  20. Damerchilu B, Norouzzadeh MS, Meybodi MR (2016) Motion estimation using learning automata. Mach Vis Appl 27:1047–1061.  https://doi.org/10.1007/s00138-016-0788-0CrossRefGoogle Scholar
  21. Di C, Zhang B, Liang Q et al (2018) Learning automata based access class barring scheme for massive random access in machine-to-machine communications. IEEE Internet Things J 1–1.  https://doi.org/10.1109/jiot.2018.2867937
  22. Di C, Su Y, Han Z, Li S (2019) Learning automata based SVM for intrusion detection, pp 2067–2074Google Scholar
  23. Farsi H, Nasiripour R, Mohammadzadeh S (2018) Eye gaze detection based on learning automata by using SURF descriptor. J Inf Syst Telecommun 21:1–10.  https://doi.org/10.7508/jist.2018.21.006CrossRefGoogle Scholar
  24. Friedman EJ, Shenker S (1992) Learning by distributed automata. Electronics Research Laboratory, College of Engineering, University of CaliforniaGoogle Scholar
  25. Friedman EJ, Shenker S (1996) Synchronous and asynchronous learning by responsive learning automataGoogle Scholar
  26. Ge H, Huang J, Di C et al (2017) Learning automata based approach for influence maximization problem on social networks. In: 2017 IEEE second international conference on data science in cyberspace (DSC). IEEE, pp 108–117Google Scholar
  27. Ghamgosar M, Khomami MMD, Bagherpour N, Meybodi MR (2017) An extended distributed learning automata based algorithm for solving the community detection problem in social networks. In: 2017 Iranian conference on electrical engineering (ICEE). IEEE, pp 1520–1526Google Scholar
  28. Ghavipour M, Meybodi MR (2016) An adaptive fuzzy recommender system based on learning automata. Electron Commer Res Appl 20:105–115.  https://doi.org/10.1016/j.elerap.2016.10.002CrossRefGoogle Scholar
  29. Ghavipour M, Meybodi MR (2017) Irregular cellular learning automata-based algorithm for sampling social networks. Eng Appl Artif Intell 59:244–259.  https://doi.org/10.1016/j.engappai.2017.01.004CrossRefGoogle Scholar
  30. Ghavipour M, Meybodi MR (2018a) A streaming sampling algorithm for social activity networks using fixed structure learning automata. Appl Intell 48:1054–1081.  https://doi.org/10.1007/s10489-017-1005-1CrossRefGoogle Scholar
  31. Ghavipour M, Meybodi MR (2018b) Trust propagation algorithm based on learning automata for inferring local trust in online social networks. Knowl-Based Syst 143:307–316.  https://doi.org/10.1016/j.knosys.2017.06.034CrossRefGoogle Scholar
  32. Ghavipour M, Meybodi MR (2018c) A dynamic algorithm for stochastic trust propagation in online social networks: learning automata approach. Comput Commun 123:11–23.  https://doi.org/10.1016/j.comcom.2018.04.004CrossRefGoogle Scholar
  33. Han Z, Li S (2019) Opportunistic routing algorithm based on estimator learning automata, pp 2486–2492Google Scholar
  34. Hasanzadeh M, Meybodi MR (2014) Grid resource discovery based on distributed learning automata. Computing 96:909–922.  https://doi.org/10.1007/s00607-013-0337-xCrossRefzbMATHGoogle Scholar
  35. Hasanzadeh Mofrad M, Sadeghi S, Rezvanian A, Meybodi MR (2015) Cellular edge detection: combining cellular automata and cellular learning automata. AEU—Int J Electron Commun 69:1282–1290.  https://doi.org/10.1016/j.aeue.2015.05.010CrossRefGoogle Scholar
  36. Hasanzadeh-Mofrad M, Rezvanian A (2018) Learning automata clustering. J Comput Sci 24:379–388.  https://doi.org/10.1016/j.jocs.2017.09.008MathSciNetCrossRefGoogle Scholar
  37. Haykin S (1994) Neural networks: a comprehensive foundation. Prentice Hall PTR, Upper Saddle RiverzbMATHGoogle Scholar
  38. Herkenrath U, Kalin D, Lakshmivarahan S (1981) On a general class of absorbing-barrier learning algorithms. Inf Sci (Ny) 24:255–263.  https://doi.org/10.1016/0020-0255(81)90034-7MathSciNetCrossRefzbMATHGoogle Scholar
  39. Huang J, Ge H, Guo Y et al (2018) A learning automaton-based algorithm for influence maximization in social networks, pp 715–722Google Scholar
  40. Javadi M, Mostafaei H, Chowdhurry MU, Abawajy JH (2018) Learning automaton based topology control protocol for extending wireless sensor networks lifetime. J Netw Comput Appl 122:128–136.  https://doi.org/10.1016/j.jnca.2018.08.012CrossRefGoogle Scholar
  41. Jobava A, Yazidi A, Oommen BJ, Begnum K (2018) On achieving intelligent traffic-aware consolidation of virtual machines in a data center using learning automata. J Comput Sci 24:290–312.  https://doi.org/10.1016/j.jocs.2017.08.005CrossRefGoogle Scholar
  42. John Oommen B, Agache M (2001) Continuous and discretized pursuit learning schemes: various algorithms and their comparison. IEEE Trans Syst Man Cybern Part B Cybern 31:277–287.  https://doi.org/10.1109/3477.931507CrossRefGoogle Scholar
  43. Kaddour N, Poznyak AS (1994) Learning automata: theory and applications. Pergamon Press, OxfordGoogle Scholar
  44. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: a survey. J Artif Intell Res 4:237–285.  https://doi.org/10.1613/jair.301CrossRefGoogle Scholar
  45. Kahani N, Fallah MS (2018) A reactive defense against bandwidth attacks using learning automata. In: Proceedings of the 13th international conference on availability, reliability and security—ARES 2018. ACM Press, New York, pp 1–6Google Scholar
  46. Khadangi E, Bagheri A, Shahmohammadi A (2016) Biased sampling from Facebook multilayer activity network using learning automata. Appl Intell 45:829–849.  https://doi.org/10.1007/s10489-016-0784-0CrossRefGoogle Scholar
  47. Khomami MMD, Bagherpour N, Sajedi H, Meybodi MR (2016a) A new distributed learning automata based algorithm for maximum independent set problem. In: 2016 artificial intelligence and robotics (IRANOPEN). IEEE, Qazvin, Iran, Iran, pp 12–17Google Scholar
  48. Khomami MMD, Rezvanian A, Meybodi MR (2016b) Distributed learning automata-based algorithm for community detection in complex networks. Int J Mod Phys B 30:1650042.  https://doi.org/10.1142/S0217979216500429MathSciNetCrossRefGoogle Scholar
  49. Khomami MMD, Rezvanian A, Meybodi MR (2018) A new cellular learning automata-based algorithm for community detection in complex social networks. J Comput Sci 24:413–426.  https://doi.org/10.1016/j.jocs.2017.10.009CrossRefGoogle Scholar
  50. King-Sun Fu (1970) Learning control systems—review and outlook. IEEE Trans Automat Contr 15:210–221.  https://doi.org/10.1109/TAC.1970.1099405MathSciNetCrossRefGoogle Scholar
  51. Kordestani JK, Firouzjaee HA, Meybodi MR (2018) An adaptive bi-flight cuckoo search with variable nests for continuous dynamic optimization problems. Appl Intell 48:97–117.  https://doi.org/10.1007/s10489-017-0963-7CrossRefGoogle Scholar
  52. Krishna K (1993) Cellular learning automata: a stochastic model for adaptive controllers. Master’s thesis, Department of Electrical Engineering, Indian Institute of Science, Bangalore, IndiaGoogle Scholar
  53. Krishna PV, Misra S, Joshi D, Obaidat MS (2013) Learning automata based sentiment analysis for recommender system on cloud. In: 2013 international conference on computer, information and telecommunication systems (CITS). IEEE, pp 1–5Google Scholar
  54. Krishna PV, Misra S, Joshi D et al (2014) Secure socket layer certificate verification: a learning automata approach. Secur Commun Netw 7:1712–1718.  https://doi.org/10.1002/sec.867CrossRefGoogle Scholar
  55. Kumar N, Misra S, Obaidat MS (2015a) Collaborative learning automata-based routing for rescue operations in dense urban regions using vehicular sensor networks. IEEE Syst J 9:1081–1090.  https://doi.org/10.1109/JSYST.2014.2335451CrossRefGoogle Scholar
  56. Kumar NN, Lee JH, Rodrigues JJ (2015b) Intelligent mobile video surveillance system as a Bayesian coalition game in vehicular sensor networks: learning automata approach. IEEE Trans Intell Transp Syst 16:1148–1161.  https://doi.org/10.1109/TITS.2014.2354372CrossRefGoogle Scholar
  57. Kushner HJ, Huang H (1981) Averaging methods for the asymptotic analysis of learning and adaptive systems, with small adjustment rate. SIAM J Control Optim 19:635–650.  https://doi.org/10.1137/0319040MathSciNetCrossRefzbMATHGoogle Scholar
  58. Lakshmivarahan S (1981) Learning algorithms theory and applications. Springer, New YorkCrossRefGoogle Scholar
  59. Lakshmivarahan S, Thathachar MAL (1973) Absolute expedient algorithms for stochastic automata. IEEE Trans Syst Man Cybern SMC-3:281–286Google Scholar
  60. Lakshmivarahan S, Thathachar MAL (1976a) Absolute expediency of Q-and S-model learning algorithms. IEEE Trans Syst Man Cybern SMC-6:222–226MathSciNetCrossRefGoogle Scholar
  61. Lakshmivarahan S, Thathachar MAL (1976b) Bounds on the convergence probabilities of learning automata. IEEE Trans Syst Man, Cybern A Syst Humans 6:756–763MathSciNetzbMATHGoogle Scholar
  62. Lanctot JK, Oommen BJ (1992) Discretized estimator learning automata. IEEE Trans Syst Man Cybern 22:1473–1483.  https://doi.org/10.1109/21.199471MathSciNetCrossRefGoogle Scholar
  63. Li W, Ozcan E, John R (2018) A learning automata based multiobjective hyper-heuristic. IEEE Trans Evol Comput 1–1.  https://doi.org/10.1109/tevc.2017.2785346
  64. Lingam G, Rout RR, Somayajulu D (2018) Learning automata-based trust model for user recommendations in online social networks. Comput Electr Eng 66:174–188.  https://doi.org/10.1016/j.compeleceng.2017.10.017CrossRefGoogle Scholar
  65. Mahdaviani M, Kordestani Jk, Rezvanian A, Meybodi MR (2015) LADE: learning automata based differential evolution. Int J Artif Intell Tools 24:1550023.  https://doi.org/10.1142/S0218213015500232CrossRefGoogle Scholar
  66. Meybodi MR, Lakshmivarahan S (1982) ε-optimality of a general class of learning algorithms. Inf Sci (NY) 28:1–20.  https://doi.org/10.1016/0020-0255(82)90029-9MathSciNetCrossRefzbMATHGoogle Scholar
  67. Meybodi MR, Lakshmivarahan S (1984) On a class of learning algorithms which have a symmetric behavior under success and failure. Lecture Notes in Statistics. Springer, Berlin, pp 145–155Google Scholar
  68. Misra S, Interior B, Kumar N et al (2014) Networks of learning automata for the vehicular environment: a performance analysis study. IEEE Wirel Commun 21:41–47.  https://doi.org/10.1109/MWC.2014.7000970CrossRefGoogle Scholar
  69. Mollakhalili Meybodi MR, Meybodi MR (2014) Extended distributed learning automata. Appl Intell 41:923–940.  https://doi.org/10.1007/s10489-014-0577-2CrossRefGoogle Scholar
  70. Moradabadi B, Meybodi MR (2016) Link prediction based on temporal similarity metrics using continuous action set learning automata. Phys A Stat Mech its Appl 460:361–373.  https://doi.org/10.1016/j.physa.2016.03.102MathSciNetCrossRefzbMATHGoogle Scholar
  71. Moradabadi B, Meybodi MR (2017a) A novel time series link prediction method: learning automata approach. Phys A Stat Mech its Appl 482:422–432.  https://doi.org/10.1016/j.physa.2017.04.019CrossRefGoogle Scholar
  72. Moradabadi B, Meybodi MR (2017b) Link prediction in fuzzy social networks using distributed learning automata. Appl Intell 47:837–849.  https://doi.org/10.1007/s10489-017-0933-0CrossRefGoogle Scholar
  73. Moradabadi B, Meybodi MR (2018a) Link prediction in weighted social networks using learning automata. Eng Appl Artif Intell 70:16–24.  https://doi.org/10.1016/j.engappai.2017.12.006CrossRefzbMATHGoogle Scholar
  74. Moradabadi B, Meybodi MR (2018b) Link prediction in stochastic social networks: learning automata approach. J Comput Sci 24:313–328.  https://doi.org/10.1016/j.jocs.2017.08.007MathSciNetCrossRefzbMATHGoogle Scholar
  75. Moradabadi B, Meybodi MR (2018c) Wavefront cellular learning automata. Chaos 28:21101.  https://doi.org/10.1063/1.5017852MathSciNetCrossRefzbMATHGoogle Scholar
  76. Morshedlou H, Meybodi MR (2014) Decreasing impact of SLA violations: a proactive resource allocation approach for cloud computing environments. IEEE Trans Cloud Comput 2:156–167.  https://doi.org/10.1109/TCC.2014.2305151CrossRefGoogle Scholar
  77. Morshedlou H, Meybodi MR (2018) A new learning automata based approach for increasing utility of service providers. Int J Commun Syst 31:e3459.  https://doi.org/10.1002/dac.3459CrossRefGoogle Scholar
  78. Mostafaei H (2018) Energy-efficient algorithm for reliable routing of wireless sensor networks. IEEE Trans Ind Electron 1–1.  https://doi.org/10.1109/tie.2018.2869345
  79. Mostafaei H, Obaidat MS (2018a) Learning automaton-based self-protection algorithm for wireless sensor networks. IET Netw 7:353–361.  https://doi.org/10.1049/iet-net.2018.0005CrossRefGoogle Scholar
  80. Mostafaei H, Obaidat MS (2018b) A distributed efficient algorithm for self-protection of wireless sensor networks. In: 2018 IEEE international conference on communications (ICC). IEEE, pp 1–6Google Scholar
  81. Mousavian A, Rezvanian A, Meybodi MR (2013) Solving minimum vertex cover problem using learning automata. In: 13th Iranian conference on fuzzy systems (IFSC 2013), pp 1–5Google Scholar
  82. Mousavian A, Rezvanian A, Meybodi MR (2014) Cellular learning automata based algorithm for solving minimum vertex cover problem. In: 2014 22nd Iranian conference on electrical engineering (ICEE). IEEE, pp 996–1000Google Scholar
  83. Narendra KS, Thathachar MAL (1974) Learning automata—a survey. IEEE Trans Syst Man Cybern SMC-4:323–334.  https://doi.org/10.1109/tsmc.1974.5408453MathSciNetCrossRefGoogle Scholar
  84. Narendra KS, Thathachar MAL (1989) Learning automata: an introduction. Prentice-HallGoogle Scholar
  85. Norman MF (1972) Markovian process and learning models. Academic Press, New YorkGoogle Scholar
  86. Norman MF (1974) Markovian learning processes. SIAM Rev 16:143–162.  https://doi.org/10.1137/1016025MathSciNetCrossRefzbMATHGoogle Scholar
  87. Oommen BJ (1986) Absorbing and ergodic discretized two-action learning automata. Syst Man Cybern IEEE Trans 16:282–293.  https://doi.org/10.1109/TSMC.1986.4308951MathSciNetCrossRefzbMATHGoogle Scholar
  88. Oommen B (1987) Ergodic learning automata capable of incorporating a priori information. IEEE Trans Syst Man Cybern 17:717–723.  https://doi.org/10.1109/TSMC.1987.289367CrossRefGoogle Scholar
  89. Oommen BJ, Christensen JPR (1988) epsilon-optimal discretized linear reward-penalty learning automata. IEEE Trans Syst Man Cybern 18:451–458.  https://doi.org/10.1109/21.7494CrossRefzbMATHGoogle Scholar
  90. Oommen BJ, Hansen E (1984) The asymptotic optimality of discretized linear reward-inaction learning automata. IEEE Trans Syst Man Cybern SMC-14:542–545.  https://doi.org/10.1109/tsmc.1984.6313256MathSciNetCrossRefGoogle Scholar
  91. Oommen BJ, Lanctôt JK (1990) Discretized pursuit learning automata. IEEE Trans Syst Man Cybern 20:931–938.  https://doi.org/10.1109/21.105092MathSciNetCrossRefzbMATHGoogle Scholar
  92. Oommen BJ, Thathachar MAL (1985) Multiaction learning automata processing ergodicity of the mean. Int J Syst Sci 35:183–198zbMATHGoogle Scholar
  93. Papadimitriou GI, Vasilakos AV, Papadimitriou GI, Paximadis CT (1991) A new approach to the design of reinforcement schemes for learning automata: stochastic estimator learning algorithms. In: Conference proceedings 1991 IEEE international conference on systems, man, and cybernetics. IEEE, pp 1387–1392Google Scholar
  94. Papadimitriou GI, Pomportsis AS, Kiritsi S, Talahoupi E (2002) Absorbing stochastic estimator learning algorithms with high accuracy and rapid convergence. In: Proceedings ACS/IEEE international conference on computer systems and applications. IEEE Computer Society, pp 45–51Google Scholar
  95. Parvanak AR, Jahanshahi M, Dehghan M (2018) A cross-layer learning automata based gateway selection method in multi-radio multi-channel wireless mesh networks. Computing.  https://doi.org/10.1007/s00607-018-0648-z
  96. Poznyak S, Najim K (1997) On nonlinear reinforcement schemes. IEEE Trans Automat Control 42:1002–1004.  https://doi.org/10.1109/9.599982MathSciNetCrossRefzbMATHGoogle Scholar
  97. Qavami HR, Jamali S, Akbari MK, Javadi B (2017) A learning automata based dynamic resource provisioning in cloud computing environments. In: 2017 18th international conference on parallel and distributed computing, applications and technologies (PDCAT). IEEE, pp 502–509Google Scholar
  98. Rahmani P, Javadi HHS, Bakhshi H, Hosseinzadeh M (2018) TCLAB: a new topology control protocol in cognitive MANETs based on learning automata. J Netw Syst Manag 26:426–462.  https://doi.org/10.1007/s10922-017-9422-3CrossRefGoogle Scholar
  99. Rahmanian AA, Ghobaei-Arani M, Tofighy S (2018) A learning automata-based ensemble resource usage prediction algorithm for cloud computing environment. Future Gener Comput Syst 79:54–71.  https://doi.org/10.1016/j.future.2017.09.049CrossRefGoogle Scholar
  100. Ren J, Wu G, Su X et al (2018) Learning automata-based data aggregation tree construction framework for cyber-physical systems. IEEE Syst J 12:1467–1479.  https://doi.org/10.1109/JSYST.2015.2507577CrossRefGoogle Scholar
  101. Rezapoor Mirsaleh M, Meybodi MR (2015) A learning automata-based memetic algorithm. Genet Program Evol Mach 16:399–453.  https://doi.org/10.1007/s10710-015-9241-9CrossRefGoogle Scholar
  102. Rezapoor Mirsaleh M, Meybodi MR (2018a) Assignment of cells to switches in cellular mobile network: a learning automata-based memetic algorithm. Appl Intell 48:3231–3247.  https://doi.org/10.1007/s10489-018-1136-zCrossRefGoogle Scholar
  103. Rezapoor Mirsaleh M, Meybodi MR (2018b) A Michigan memetic algorithm for solving the vertex coloring problem. J Comput Sci 24:389–401.  https://doi.org/10.1016/j.jocs.2017.10.005MathSciNetCrossRefGoogle Scholar
  104. Rezapoor Mirsaleh M, Meybodi MR (2018c) Balancing exploration and exploitation in memetic algorithms: a learning automata approach. Comput Intell 34:282–309.  https://doi.org/10.1111/coin.12148MathSciNetCrossRefGoogle Scholar
  105. Rezvanian A, Meybodi MR (2010) Tracking extrema in dynamic environments using a learning automata-based immune algorithm. Communications in computer and information science. Springer, Berlin, pp 216–225zbMATHGoogle Scholar
  106. Rezvanian A, Meybodi MR (2015a) Finding maximum clique in stochastic graphs using distributed learning automata. Int J Uncertain Fuzziness Knowl-Based Syst 23:1–31.  https://doi.org/10.1142/S0218488515500014MathSciNetCrossRefzbMATHGoogle Scholar
  107. Rezvanian A, Meybodi MR (2015b) Finding minimum vertex covering in stochastic graphs: a learning automata approach. Cybern Syst 46:698–727.  https://doi.org/10.1080/01969722.2015.1082407CrossRefzbMATHGoogle Scholar
  108. Rezvanian A, Meybodi MR (2016a) Stochastic social networks: measures and algorithms. LAP LAMBERT Academic PublishingGoogle Scholar
  109. Rezvanian A, Meybodi MR (2016b) Stochastic graph as a model for social networks. Comput Human Behav 64:621–640.  https://doi.org/10.1016/j.chb.2016.07.032CrossRefGoogle Scholar
  110. Rezvanian A, Meybodi MR (2017a) Sampling algorithms for stochastic graphs: a learning automata approach. Knowl-Based Syst 127:126–144.  https://doi.org/10.1016/j.knosys.2017.04.012CrossRefGoogle Scholar
  111. Rezvanian A, Meybodi MR (2017b) A new learning automata-based sampling algorithm for social networks. Int J Commun Syst 30:e3091.  https://doi.org/10.1002/dac.3091CrossRefGoogle Scholar
  112. Rezvanian A, Rahmati M, Meybodi MR (2014) Sampling from complex networks using distributed learning automata. Phys A Stat Mech Appl 396:224–234.  https://doi.org/10.1016/j.physa.2013.11.015CrossRefGoogle Scholar
  113. Rezvanian A, Saghiri AM, Vahidipour SM et al (2018a) Recent advances in learning automata. SpringerGoogle Scholar
  114. Rezvanian A, Saghiri AM, Vahidipour SM et al (2018b) Learning automata for cognitive peer-to-peer networks. In: Recent advances in learning automata, pp 221–278CrossRefGoogle Scholar
  115. Rezvanian A, Saghiri AM, Vahidipour SM et al (2018c) Learning automata for wireless sensor networks. In: Recent advances in learning automata, pp 91–219CrossRefGoogle Scholar
  116. Rezvanian A, Vahidipour SM, Esnaashari M (2018d) New applications of learning automata-based techniques in real-world environments. J Comput Sci 24:287–289.  https://doi.org/10.1016/j.jocs.2017.11.012CrossRefGoogle Scholar
  117. Saghiri AM, Meybodi MR (2016) An approach for designing cognitive engines in cognitive peer-to-peer networks. J Netw Comput Appl 70:17–40.  https://doi.org/10.1016/j.jnca.2016.05.012CrossRefGoogle Scholar
  118. Saghiri AM, Meybodi MR (2017) A distributed adaptive landmark clustering algorithm based on mOverlay and learning automata for topology mismatch problem in unstructured peer-to-peer networks. Int J Commun Syst 30:e2977.  https://doi.org/10.1002/dac.2977CrossRefGoogle Scholar
  119. Saghiri AM, Meybodi MR (2018) An adaptive super-peer selection algorithm considering peers capacity utilizing asynchronous dynamic cellular learning automata. Appl Intell 48:271–299.  https://doi.org/10.1007/s10489-017-0946-8CrossRefGoogle Scholar
  120. Sato T (1999) On some asymptotic properties of learning automaton networksGoogle Scholar
  121. Sawaragi Y, Baba N (1973) A note on the learning behavior of variable-structure stochastic automata. IEEE Trans Syst Man Cybern SMC-3:644–647.  https://doi.org/10.1109/tsmc.1973.4309320
  122. Sawaragi Y, Baba N (1974) Two ε-optimal nonlinear reinforcement schemes for stochastic automata. IEEE Trans Syst Man Cybern SMC-4:126–131.  https://doi.org/10.1109/tsmc.1974.5408538MathSciNetCrossRefGoogle Scholar
  123. Seyyedi SH, Minaei-Bidgoli B (2018) Estimator learning automata for feature subset selection in high-dimensional spaces, case study: email spam detection. Int J Commun Syst 31:e3541.  https://doi.org/10.1002/dac.3541CrossRefGoogle Scholar
  124. Sikeridis D, Tsiropoulou EE, Devetsikiotis M, Papavassiliou S (2018) Socio-physical energy-efficient operation in the internet of multipurpose things. In: 2018 IEEE international conference on communications (ICC). IEEE, pp 1–7Google Scholar
  125. Simha R, Kurose JF (1989) Relative reward strength algorithms for learning automata. IEEE Trans Syst Man Cybern 19:388–398.  https://doi.org/10.1109/21.31041MathSciNetCrossRefGoogle Scholar
  126. Sohrabi MK, Roshani R (2017) Frequent itemset mining using cellular learning automata. Comput Human Behav 68:244–253.  https://doi.org/10.1016/j.chb.2016.11.036CrossRefGoogle Scholar
  127. Soleimani-Pouri M, Rezvanian A, Meybodi MR (2012) Solving maximum clique problem in stochastic graphs using learning automata. In: 2012 fourth international conference on computational aspects of social networks (CASoN). IEEE, pp 115–119Google Scholar
  128. Su Y, Qi K, Di C et al (2018) Learning automata based feature selection for network traffic intrusion detection. In: 2018 IEEE third international conference on data science in cyberspace (DSC). IEEE, pp 622–627Google Scholar
  129. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, CambridgeGoogle Scholar
  130. Thathachar MAL, Harita BR (1987) Learning automata with changing number of actions. IEEE Trans Syst Man Cybern 17:1095–1100.  https://doi.org/10.1109/TSMC.1987.6499323CrossRefGoogle Scholar
  131. Thathachar MAL, Oommen BJ (1983) Learning automata processing ergodicity of the mean: the two-action case. IEEE Trans Syst Man Cybern SMC-13:1143–1148.  https://doi.org/10.1109/tsmc.1983.6313191CrossRefGoogle Scholar
  132. Thathachar MAL, Ramachandran KM (1984) Asymptotic behaviour of a learning algorithm. Int J Control 39:827–838.  https://doi.org/10.1080/00207178408933209MathSciNetCrossRefzbMATHGoogle Scholar
  133. Thathachar MAL, Sastry PS (1985a) A new approach to the design of reinforcement schemes for learning automata. IEEE Trans Syst Man Cybern SMC-15:168–175.  https://doi.org/10.1109/tsmc.1985.6313407MathSciNetCrossRefGoogle Scholar
  134. Thathachar MAL, Sastry PS (1985b) A class of rapidly converging algorithms for learning automata. IEEE Trans Syst Man Cybern SMC-15:168–175Google Scholar
  135. Thathachar M, Sastry P (1986) Estimator algorithms for learning automata. In: Proceedings of the platinum jubilee conference on systems and signal processing, Bangalore, India. Bangalore, IndiaGoogle Scholar
  136. Thathachar MALAL, Sastry PSS (1987) A hierarchical system of learning automata that can learn die globally optimal path. Inf Sci (NY) 42:143–166.  https://doi.org/10.1016/0020-0255(87)90021-1CrossRefzbMATHGoogle Scholar
  137. Thathachar MAL, Sastry PS (2002) Varieties of learning automata: an overview. IEEE Trans Syst Man Cybern Part B Cybern 32:711–722.  https://doi.org/10.1109/TSMCB.2002.1049606CrossRefGoogle Scholar
  138. Thathachar MAL, Sastry PS (2003) Networks of learning automata: techniques for online stochastic optimization. Springer, BostonGoogle Scholar
  139. Toffolo TAM, Christiaens J, Van Malderen S et al (2018) Stochastic local search with learning automaton for the swap-body vehicle routing problem. Comput Oper Res 89:68–81.  https://doi.org/10.1016/j.cor.2017.08.002MathSciNetCrossRefzbMATHGoogle Scholar
  140. Toozandehjani H, Zare-Mirakabad M-R, Derhami V (2014) Improvement of recommendation systems based on cellular learning automata. In: 2014 4th international conference on computer and knowledge engineering (ICCKE). IEEE, pp 592–597Google Scholar
  141. Tsetlin ML (1962) On the behavior of finite automata in random media. Autom Remote Control 22:1210–1219MathSciNetzbMATHGoogle Scholar
  142. Vafashoar R, Meybodi MR (2016) Multi swarm bare bones particle swarm optimization with distribution adaption. Appl Soft Comput J 47:534–552.  https://doi.org/10.1016/j.asoc.2016.06.028CrossRefGoogle Scholar
  143. Vahidipour SM, Meybodi MR, Esnaashari M (2017a) Adaptive Petri net based on irregular cellular learning automata with an application to vertex coloring problem. Appl Intell 46:272–284.  https://doi.org/10.1007/s10489-016-0831-xCrossRefzbMATHGoogle Scholar
  144. Vahidipour SM, Meybodi MR, Esnaashari M (2017b) Finding the shortest path in stochastic graphs using learning automata and adaptive stochastic petri nets. Int J Uncertain Fuzziness Knowl-Based Syst 25:427–455.  https://doi.org/10.1142/S0218488517500180MathSciNetCrossRefzbMATHGoogle Scholar
  145. Vahidipour SM, Esnaashari M, Rezvanian A, Meybodi MR (2019) GAPN-LA: a framework for solving graph problems using Petri nets and learning automata. Eng Appl Artif Intell 77:255–267.  https://doi.org/10.1016/j.engappai.2018.10.013CrossRefGoogle Scholar
  146. Vasilakos AV, Paximadis CT (1994) Faulttolerant routing algorithms using estimator discretized learning automata for high-speed packet-switched networks. IEEE Trans Reliab 43:582–593.  https://doi.org/10.1109/24.370222CrossRefGoogle Scholar
  147. Velusamy G, Lent R (2018) Dynamic cost-aware routing of web requests. Future Internet 10:57.  https://doi.org/10.3390/fi10070057CrossRefGoogle Scholar
  148. Verbeeck K, Nowé A, Nowe A (2002) Colonies of learning automata. IEEE Trans Syst Man Cybern Part B Cybern 32:772–780.  https://doi.org/10.1109/TSMCB.2002.1049611CrossRefGoogle Scholar
  149. Viswanathan R, Narendra KS (1972) A note on the linear reinforcement scheme for variable-structure stochastic automata. IEEE Trans Syst Man Cyberen I:292–294.  https://doi.org/10.1109/TSMC.1972.4309112MathSciNetCrossRefzbMATHGoogle Scholar
  150. Willianms RJ (1988) Toward a theory of reinforcement-learning connectionist systems. Northeastern UniversityGoogle Scholar
  151. Zhao Y, Jiang W, Li S et al (2015) A cellular learning automata based algorithm for detecting community structure in complex networks. Neurocomputing 151:1216–1226.  https://doi.org/10.1016/j.neucom.2014.04.087CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alireza Rezvanian
    • 1
    • 2
    Email author
  • Behnaz Moradabadi
    • 2
  • Mina Ghavipour
    • 2
  • Mohammad Mehdi Daliri Khomami
    • 2
  • Mohammad Reza Meybodi
    • 2
  1. 1.School of Computer ScienceInstitute for Research in Fundamental Sciences (IPM)TehranIran
  2. 2.Computer Engineering and Information Technology DepartmentAmirkabir University of Technology (Tehran Polytechnic)TehranIran

Personalised recommendations