Advertisement

Towards an Integrated Framework for Aerospace Supply Chain Sustainability

  • Cátia Barbosa
  • Nuno Falcão e Cunha
  • Carlos Malarranha
  • Telmo Pinto
  • Ana Carvalho
  • Pedro Amorim
  • M. Sameiro Carvalho
  • Américo Azevedo
  • Susana Relvas
  • Tânia Pinto-Varela
  • Ana Cristina Barros
  • Filipe Alvelos
  • Cláudio Alves
  • Jorge Pinho de Sousa
  • Bernardo Almada-Lobo
  • José Valério de Carvalho
  • Ana Barbosa-PóvoaEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 278)

Abstract

Supply chains have become one of the most important strategic themes in the aerospace industry in recent years as globalization and deep technological changes have altered the industry at many levels, creating new dynamics and strategies. In this setting, sustainability at the supply chain level is an emerging research topic, whose contributions aim to support businesses into the future. To do so the development of new products and the response to new industry requirements, while incorporating new materials appears as a path to follow, which require more resilient and agile supply chains, while guaranteeing their sustainability. Such supply chains will be better prepared for the future complex challenges and risks faced by the aerospace companies. Such challenges are addressed in this work, where an integrated framework is proposed to contribute to the resilience and sustainability of aerospace supply chains. Using different analysis methods, the framework addresses four important challenges in the context of aerospace supply chain sustainability: evolution and new trends, performance assessment, supplier selection, and supply chain design and planning.

Keywords

Aerospace industry Supply chain management Sustainability Integrated framework 

Notes

Acknowledgements

This work has been supported by project MITP-TB/PFM/0005/2013 in the frame of MIT-Portugal program, by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundação para a Ciência e a Tecnologia within the project UID/CEC/00319/2013, and by the grant PD/BD/105988/2014.

References

  1. 1.
    Beelaerts van Blokland, W.W., Santema, S., Curran, R.: Lean supply chain management in aerospace. Encyclopedia of Aerospace Engineering (2010)Google Scholar
  2. 2.
    Tang, C.S., Zimmerman, J.D., Nelson, J.I.: Managing new product development and supply chain risks: the boeing 787 case. Supply Chain Forum Int. J. 10(2), 74–86 (2009)CrossRefGoogle Scholar
  3. 3.
    Sustainability Accounting Standards Board. Aerospace & Defense Research Brief (2015)Google Scholar
  4. 4.
    Slayton, R., Spinardi, G.: Radical innovation in scaling up: Boeings dreamliner and the challenge of socio-technical transitions. Technovation 47, 47–58 (2016)CrossRefGoogle Scholar
  5. 5.
    IATA. Iata technology roadmapGoogle Scholar
  6. 6.
    International, ICF. Global Aerospace Sector M&A update. Catalyst Corporate Finance (2012)Google Scholar
  7. 7.
    Mocenco, D.: Supply chain features of the aerospace industry particular case airbus and boeing. Sci. Bull.-Econ. Sci. 14(2), 17–25 (2015)Google Scholar
  8. 8.
  9. 9.
    Wyman, O.: Challenges for European Aerospace Suppliers (2015)Google Scholar
  10. 10.
    Berger, R.: Aerospace industry: turning point ahead? (2016)Google Scholar
  11. 11.
    United Nations: Supply Chain Sustainability - A Practical Guide for Continuous Improvement - Second Edition (2015)Google Scholar
  12. 12.
    Bombardier stakeholder engagement. https://www.bombardier.com/en/sustainability/stakeholder-engagement.html. Accessed 09 March 2018
  13. 13.
    Gan, T., Steffan, M., Grunow, M., Akkerman, R.: Concurrent design of product and supply chain architectures: method and application for modularity and flexibilityGoogle Scholar
  14. 14.
    Airbus be an airbus supplier. http://www.airbus.com/be-an-airbus-supplier.html. Accessed 22 Feb 2018
  15. 15.
    Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Alem, D., Curcio, E., Amorim, P., Almada-Lobo, B.: A computational study of the general lot-sizing and scheduling model under demand uncertainty via robust and stochastic approaches. Comput. Oper. Res. 90, 125–141 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Schieritz, N., Größler, A.: Emergent structures in supply chains - a study integrating agent-based and system dynamics modeling. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences (2013)Google Scholar
  18. 18.
    Sterman, J.D.: Business dynamics: systems thinking and modeling for a complex worldGoogle Scholar
  19. 19.
    Seuring, S.: A review of modeling approaches for sustainable supply chain management. Decis. Support Syst. 54(4), 1513–1520 (2013)CrossRefGoogle Scholar
  20. 20.
    Mota, B., Gomes, M.I., Carvalho, A., Barbosa-Póvoa, A.P.: Towards supply chain sustainability: economic, environmental and social design and planning. J. Clean. Prod. 105, 14–27 (2015)CrossRefGoogle Scholar
  21. 21.
    Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., Van Zelm, R.: Recipe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level 1 (2009)Google Scholar
  22. 22.
    Mota, B., Gomes, M.I., Carvalho, A., Barbosa-Póvoa, A.P.: Sustainable supply chains: an integrated modeling approach under uncertainty. Omega 77, 32–57 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cátia Barbosa
    • 1
  • Nuno Falcão e Cunha
    • 1
  • Carlos Malarranha
    • 2
  • Telmo Pinto
    • 3
  • Ana Carvalho
    • 2
  • Pedro Amorim
    • 1
  • M. Sameiro Carvalho
    • 3
  • Américo Azevedo
    • 1
  • Susana Relvas
    • 2
  • Tânia Pinto-Varela
    • 2
  • Ana Cristina Barros
    • 4
  • Filipe Alvelos
    • 3
  • Cláudio Alves
    • 3
  • Jorge Pinho de Sousa
    • 1
  • Bernardo Almada-Lobo
    • 1
  • José Valério de Carvalho
    • 3
  • Ana Barbosa-Póvoa
    • 2
    Email author
  1. 1.INESC TEC and Faculdade de Engenharia da Universidade do PortoPortoPortugal
  2. 2.CEG-IST, Instituto Superior Técnico, Universidade de LisboaLisboaPortugal
  3. 3.Centro ALGORITMI, Escola de EngenhariaUniversidade do MinhoBragaPortugal
  4. 4.INESC TECPortoPortugal

Personalised recommendations