Advertisement

IoT Applications in Agriculture: A Systematic Literature Review

  • Raquel Gómez-ChablaEmail author
  • Karina Real-Avilés
  • César Morán
  • Paola Grijalva
  • Tanya Recalde
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 901)

Abstract

The digital breach between agricultural producers and IoT technologies has reduced in the last years. In the future, these technologies will allow improving productivity through the sustainable cultivation of food, as well as to take care of the environment thanks to the efficient use of water and the optimization of inputs and treatments. IoT technologies allow developing systems that support different agricultural processes. Some of these systems are remote monitoring systems, decision support tools, automated irrigation systems, frost protection systems, and fertilization systems, among others. Considering the aforementioned facts, it is necessary to provide farmers and researchers with a clear perspective of IoT applications in agriculture. In this sense, this work presents a systematic literature review of IoT-based tools and applications for agriculture. The objective of this paper is to offer an overview of the IoT applications in agriculture through topics such IoT-based software applications for agriculture available in the market, IoT-based devices used in the agriculture, as well as the benefits provided by this kind of technologies.

Keywords

IoT Agriculture Software Sensors Cloud computing 

References

  1. 1.
    Gómez-Chabla, R., Aguirre-Munizaga, M., Samaniego-Cobo, T., Choez, J., Vera-Lucio, N.: A reference framework for empowering the creation of projects with arduino in the ecuadorian universities. In: Valencia-García, R., Lagos-Ortiz, K., Alcaraz-Mármol, G., Del Cioppo, J., Vera-Lucio, N., Bucaram-Leverone, M. (eds.) Communications in Computer and Information Science, pp. 239–251 (2017)Google Scholar
  2. 2.
    Bouaziz, M., Rachedi, A.: A survey on mobility management protocols in Wireless Sensor Networks based on 6LoWPAN technology. Comput. Commun. 74, 3–15 (2016)CrossRefGoogle Scholar
  3. 3.
    van der Ploeg, J.D.: Peasant-driven agricultural growth and food sovereignty. J. Peasant Stud. 41, 999–1030 (2014)CrossRefGoogle Scholar
  4. 4.
    Goumopoulos, C., O’Flynn, B., Kameas, A.: Automated zone-specific irrigation with wireless sensor/actuator network and adaptable decision support. Comput. Electron. Agric. 105, 20–33 (2014)CrossRefGoogle Scholar
  5. 5.
    Bertino, E., Choo, K.-K.R., Georgakopolous, D., Nepal, S.: Internet of things (IoT). ACM Trans. Internet Technol. 16, 1–7 (2016)CrossRefGoogle Scholar
  6. 6.
    Berte, D.-R.: Defining the IoT. Proc. Int. Conf. Bus. Excell. 12, 118–128 (2018)CrossRefGoogle Scholar
  7. 7.
    Sugawara, E., Nikaido, H.: Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrob. Agents Chemother. 58, 7250–7257 (2014)CrossRefGoogle Scholar
  8. 8.
    Phupattanasin, P., Tong, S.-R.: Applying information-centric networking in today’s agriculture. APCBEE Procedia 8, 184–188 (2014)CrossRefGoogle Scholar
  9. 9.
    Akhtar, P., Khan, Z., Tarba, S., Jayawickrama, U.: The Internet of Things, dynamic data and information processing capabilities, and operational agility. Technol. Forecast. Soc. Change (2017)Google Scholar
  10. 10.
    Hlaing, W., Thepphaeng, S., Nontaboot, V., Tangsunantham, N., Sangsuwan, T., Pira, C.: Implementation of WiFi-based single phase smart meter for Internet of Things (IoT). In: 2017 International Electrical Engineering Congress (iEECON), pp. 1–4. IEEE (2017)Google Scholar
  11. 11.
    Venkatesan, R., Tamilvanan, A.: A sustainable agricultural system using IoT. In: 2017 International Conference on Communication and Signal Processing (ICCSP), pp. 0763–0767. IEEE (2017)Google Scholar
  12. 12.
    González, D.R.: Arquitectura y Gestión de la IoT. Rev. Telem@tica, 12 (2013)Google Scholar
  13. 13.
    Mohd Kassim, M.R., Mat, I., Harun, A.N.: Wireless sensor network in precision agriculture application. In: 2014 International Conference on Computer, Information and Telecommunication Systems (CITS), pp. 1–5. IEEE (2014)Google Scholar
  14. 14.
    Li, S.: Application of the internet of things technology in precision agriculture IRrigation systems. In: 2012 International Conference on Computer Science and Service System, pp. 1009–1013. IEEE (2012)Google Scholar
  15. 15.
    Aqeel-ur-Rehman: Smart Agriculture. In: 2017 International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT), pp. 1–1. IEEE (2017)Google Scholar
  16. 16.
    Carrasquilla-Batista, A., Chacon-Rodriguez, A., Solorzano-Quintana, M., Guerrero-Barrantes, M.: IoT applications: on the path of Costa Rica’s commitment to becoming carbon-neutral. In: 2017 International Conference on Internet of Things for the Global Community (IoTGC), pp. 1–6. IEEE (2017)Google Scholar
  17. 17.
    Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the internet of things: a survey. Cogn. Neuropsychol. 29, 349–353 (2013)Google Scholar
  18. 18.
    Chen, H.-C., Chang, C.-H., Leu, F.-Y.: Implement of agent with role-based hierarchy access control for secure grouping IoTs. In: 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 120–125. IEEE (2017)Google Scholar
  19. 19.
    Sosa, E., Godoy, D.: Internet del Futuro. Desafíos y perspectivas. Rev. Cienc. y Tecnol. 1, 40–46 (2013)Google Scholar
  20. 20.
    Mekala, M.S., Viswanathan, P.: A survey: smart agriculture IoT with cloud computing. In: 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), pp. 1–7. IEEE (2017)Google Scholar
  21. 21.
    Rajeswari, S., Suthendran, K., Rajakumar, K.: A smart agricultural model by integrating IoT, mobile and cloud-based big data analytics. In: 2017 International Conference on Intelligent Computing and Control (I2C2), pp. 1–5. IEEE, Coimbatore (2017)Google Scholar
  22. 22.
    Ordonez-Garcia, A., Siller, M., Begovich, O.: IoT architecture for urban agronomy and precision applications. In: 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), pp. 1–4. IEEE (2017)Google Scholar
  23. 23.
    Uddin, M.A., Mansour, A., Le Jeune, D., Aggoune, E.H.M.: Agriculture internet of things: AG-IoT. In: 2017 27th International Telecommunication Networks and Applications Conference (ITNAC), pp. 1–6. IEEE (2017)Google Scholar
  24. 24.
    Wortman, S.E.: Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Sci. Hortic. (Amsterdam) 194, 34–42 (2015)CrossRefGoogle Scholar
  25. 25.
    Yunseop, K., Evans, R.G., Iversen, W.M.: Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Trans. Instrum. Meas. 57, 1379–1387 (2008)CrossRefGoogle Scholar
  26. 26.
    Atmadja, W., Liawatimena, S., Lukas, J., Nata, E.P.L., Alexander, I.: Hydroponic system design with real time OS based on ARM Cortex-M microcontroller. In: IOP Conference Series: Earth and Environmental Science (2018)Google Scholar
  27. 27.
    Al-Karaki, G.N., Al-Hashimi, M.: Green fodder production and water use efficiency of some forage crops under hydroponic conditions. ISRN Agron. 2012, 1–5 (2012)Google Scholar
  28. 28.
    Montoya, A.P., Obando, F.A., Morales, J.G., Vargas, G.: Automatic aeroponic irrigation system based on Arduino’s platform. In: Journal of Physics: Conference Series (2017)Google Scholar
  29. 29.
    Barbosa, G.L., et al.: Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. Conventional agricultural methods. Int. J. Environ. Res. Public Health 12(6), 6879–6891(2015)CrossRefGoogle Scholar
  30. 30.
    Bin Ismail, M.I.H., Thamrin, N.M.: IoT implementation for indoor vertical farming watering system. In: 2017 International Conference on Electrical, Electronics and System Engineering (ICEESE), pp. 89–94. IEEE (2017)Google Scholar
  31. 31.
    Dolci, R.: IoT solutions for precision farming and food manufacturing: artificial intelligence applications in digital food. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), pp. 384–385. IEEE (2017)Google Scholar
  32. 32.
    Jin, J., Ma, Y., Zhang, Y., Huang, Q.: Design and implementation of an agricultural IoT based on LoRa. MATEC Web Conf. 189, 04011 (2018)CrossRefGoogle Scholar
  33. 33.
    Webb, J., Hume, D.: Campus IoT collaboration and governance using the NIST cybersecurity framework. In: Living in the Internet of Things: Cybersecurity of the IoT – 2018, p. 25 (7 pp.). Institution of Engineering and Technology (2018)Google Scholar
  34. 34.
    Krishna, K.L., Silver, O., Malende, W.F., Anuradha, K.: Internet of Things application for implementation of smart agriculture system. In: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 54–59. IEEE (2017)Google Scholar
  35. 35.
    Anvekar, R.G., Banakar, R.M., Bhat, R.R.: Design alternatives for end user communication in IoT based system model. In: 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), pp. 121–125. IEEE (2017)Google Scholar
  36. 36.
    Mohanraj, I., Ashokumar, K., Naren, J.: Field monitoring and automation using IOT in agriculture domain. Procedia Comput. Sci. 93, 931–939 (2016)CrossRefGoogle Scholar
  37. 37.
    Gill, S.S., Chana, I., Buyya, R.: IoT based agriculture as a cloud and big data service. J. Organ. End User Comput. 29, 1–23 (2017)CrossRefGoogle Scholar
  38. 38.
    Fonseca, S.M., Massruhá, S., Angelica De Andrade Leite, M.: Agro 4.0 – Rumo À Agricultura Digital, pp. 28–35 (2016)Google Scholar
  39. 39.
    Pandithurai, O., Aishwarya, S., Aparna, B., Kavitha, K.: Agro-tech: a digital model for monitoring soil and crops using internet of things (IOT). In: 2017 Third International Conference on Science Technology Engineering & Management (ICONSTEM), pp. 342–346. IEEE (2017)Google Scholar
  40. 40.
    Shete, R., Agrawal, S.: IoT based urban climate monitoring using raspberry Pi. Int. Conf. Commun. Signal Process. April 6–8, 2016, India IoT. 2008–2012 (2016)Google Scholar
  41. 41.
    Kaewmard, N., Saiyod, S.: Sensor data collection and irrigation control on vegetable crop using smart phone and wireless sensor networks for smart farm. In: 2014 IEEE Conference on Wireless Sensors (ICWiSE), pp. 106–112. IEEE (2014)Google Scholar
  42. 42.
    Nandyala, C.S., Kim, H.K.: Green IoT agriculture and healthcare application (GAHA). Int. J. Smart Home 10, 289–300 (2016)CrossRefGoogle Scholar
  43. 43.
    Cambra, C., Sendra, S., Lloret, J., Garcia, L.: An IoT service-oriented system for agriculture monitoring. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2017)Google Scholar
  44. 44.
    Ma, J., Zhou, X., Li, S., Li, Z.: Connecting agriculture to the internet of things through sensor networks. In: 2011 International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing, pp. 184–187. IEEE (2011)Google Scholar
  45. 45.
    Stewart, J., Stewart, R., Kennedy, S.: Internet of things — propagation modelling for precision agriculture applications. In: 2017 Wireless Telecommunications Symposium (WTS), pp. 1–8. IEEE (2017)Google Scholar
  46. 46.
    Kiani, F., Seyyedabbasi, A.: Wireless sensor network and internet of things in precision agriculture. Int. J. Adv. Comput. Sci. Appl. 9(8), 220–226 (2018)Google Scholar
  47. 47.
    Kapoor, A., Bhat, S.I., Shidnal, S., Mehra, A.: Implementation of IoT (Internet of Things) and image processing in smart agriculture. In: 2016 International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), pp. 21–26. IEEE (2016)Google Scholar
  48. 48.
    Elijah, O., Rahman, T.A., Orikumhi, I., Leow, C.Y., Hindia, M.N.: An overview of internet of things (IoT) and data analytics in agriculture: benefits and challenges. IEEE Internet Things J. 1–1 (2018)Google Scholar
  49. 49.
    Sales, N., Remedios, O., Arsenio, A.: Wireless sensor and actuator system for smart irrigation on the cloud. In: IEEE World Forum on Internet of Things, WF-IoT 2015 - Proceedings, pp. 693–698. IEEE (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Escuela de Ingeniería en Computación e InformáticaGuayaquilEcuador
  2. 2.Carrera de Ingeniería Agronómica, Facultad de Ciencias Agrarias, Universidad Agraria del EcuadorGuayaquilEcuador
  3. 3.Carrera de Medicina, Facultad de Ciencias Médicas, Universidad de GuayaquilGuayaquilEcuador

Personalised recommendations