Advertisement

Automated Hydroponic Modular System

  • Erick González-Linch
  • José Medina-Moreira
  • Abel Alarcón-Salvatierra
  • Silvia Medina-Anchundia
  • Katty Lagos-OrtizEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 901)

Abstract

The purpose of this document is to evaluate the implementation of technology to the hydroponics technique. Knowing that classical cultivation requires the permanent care of the human being for the irrigation of water and tender of the nutritive solution, it is proposed to use technology to replace the basic functions of crop irrigation through the use of programmable and reprogrammable microcontrollers, thus following the free hardware culture, this paper evaluates a scalable system with sensors, an open source hardware and software platform to interact between analog and digital signals. Within the steps that comprehend the realization of the project, the methodology based on components, provides the appropriate guidance for the analysis and choice of hardware, thus allowing the integration of the electronic components to work along with the appropriate coding; as a result the project will collect the pH value present in the nutrient solution, if the value is not adequate, it will automatically activate the insertion of the solution to the container reservoir, to subsequently operate the automated water irrigation for hydroponic farming. Another relevant aspect is that the project can be improved with other devices that will allow an even greater control of variables and data of hydroponics crops.

Keywords

Hydroponics Automated Modular Capsicum annuum 

Notes

Acknowledgements

This work was made thanks to the contribution of Mr. Engineer Daniel Mendoza.

References

  1. 1.
    Diver, S.: Aquaponics-Integration of Hydroponics with Aquaculture, pp. 2–28. Attra, Melbourne (2010)Google Scholar
  2. 2.
    Jones, J.B.: Hydroponics: its history and use in plant nutrition studies. J. Plant Nutr. 5, 1003–1030 (1982)CrossRefGoogle Scholar
  3. 3.
    Beltrano, J., Gimenez, D.O.: Cultivo en hidroponía. D - Editorial de la Universidad Nacional de La Plata (2015)Google Scholar
  4. 4.
    Toda, T., Koyama, H., Hara, T.: A simple hydroponic culture method for the development of a highly viable root system in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 63, 210–212 (1999)CrossRefGoogle Scholar
  5. 5.
    López-Morales, V., López-Ortega, O., Ramos-Fernández, J., Muñoz, L.B.: JAPIEST: an integral intelligent system for the diagnosis and control of tomatoes diseases and pests in hydroponic greenhouses. Expert Syst. Appl. 35, 1506–1512 (2008)CrossRefGoogle Scholar
  6. 6.
    Domingues, D.S., Takahashi, H.W., Camara, C.A.P., Nixdorf, S.L.: Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Comput. Electron. Agric. 84, 53–61 (2012)CrossRefGoogle Scholar
  7. 7.
    Ibayashi, H., et al.: A reliable wireless control system for tomato hydroponics. Sensors 16, 644 (2016)CrossRefGoogle Scholar
  8. 8.
    Saaid, M.F., Sanuddin, A., Ali, M., Yassin, M.S.A.I.M.: Automated pH controller system for hydroponic cultivation. In: 2015 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), pp. 186–190. IEEE (2015)Google Scholar
  9. 9.
    Ferentinos, K.P., Albright, L.D., Selman, B.: Neural network-based detection of mechanical, sensor and biological faults in deep-trough hydroponics. Comput. Electron. Agric. 40, 65–85 (2003)CrossRefGoogle Scholar
  10. 10.
    Guo, X., van Iersel, M.W., Chen, J., Brackett, R.E., Beuchat, L.R.: Evidence of association of salmonellae with tomato plants grown hydroponically in inoculated nutrient solution. Appl. Environ. Microbiol. 68, 3639–3643 (2002)CrossRefGoogle Scholar
  11. 11.
    Savvas, D., et al.: Interactions between salinity and irrigation frequency in greenhouse pepper grown in closed-cycle hydroponic systems. Agric. Water Manag. 91, 102–111 (2007)CrossRefGoogle Scholar
  12. 12.
    Tuberosa, R., Sanguineti, M.C., Landi, P., Michela Giuliani, M., Salvi, S., Conti, S.: Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol. Biol. 48, 697–712 (2002)CrossRefGoogle Scholar
  13. 13.
    Wong, J.: United States PatentGoogle Scholar
  14. 14.
    Powering the arduino with a 5 V power supply. https://forum.arduino.cc/index.php?topic=271158.0
  15. 15.
    Banzi: Getting Started with Arduino and Genuino products. (2017)Google Scholar
  16. 16.
    Strohbach, M., Gellersen, H.-W., Kortuem, G., Kray, C.: Cooperative Artefacts: Assessing Real World Situations with Embedded Technology. Presented at the (2004)Google Scholar
  17. 17.
    Llamas, L.: Medir la humedad del suelo con Arduino y sensor FC-28. https://www.luisllamas.es/arduino-humedad-suelo-fc-28/
  18. 18.
    Inga, F.: Diferencias entre cultivo hidroponico y cultivo en tierra. https://www.paisagrowseeds.com/diferencias-entre-cultivo-hidroponico-y-cultivo-en-tierra/
  19. 19.
    Jafarnia, S., Khosrowshahi, S., Hatamzadeh, A., Ali, T.: Effect of substrate and variety on some important quality and quantity characteristics of strawberry production in vertical hydroponics system. Adv. Environ. Biol. 3, 360–363 (2010)Google Scholar
  20. 20.
    Harnett, C.: Open source hardware for instrumentation and measurement. IEEE Instrum. Meas. Mag. 14, 34–38 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias Matemáticas y Físicas, Cdla, Universidad de Guayaquil, Universitaria “Salvador Allende”GuayaquilEcuador
  2. 2.Facultad de Ciencias AgrariasUniversidad Agraria del EcuadorGuayaquilEcuador

Personalised recommendations