Advertisement

Trends in the Use of Webapps in Agriculture: A Systematic Review

  • Mariuxi Tejada-CastroEmail author
  • Carlota Delgado-Vera
  • Mayra Garzón-Goya
  • Andrea Sinche-Guzmam
  • Xavier Cárdenas-Rosales
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 901)

Abstract

Currently, the use of technology in agriculture is increasing, playing a fundamental role. Its use is becoming more and more widespread as farmers’ demands grow. The employment of WebApp is increasingly transforming the way in which information is disseminated and obtained in the agricultural sector. In this sense, this work presents a systematic review of the literature on the WebApp’s tendency in agriculture. Its objective was to identify in which phases of the crop cycle it has the most technological support, Web or mobile, and what functionalities the applications carry out, as well as to detect the tendency of use by the farmer. Accordingly, tools were used that allow us to make descriptive statistical metrics, where they proved that, due to their versatility and multiplatform, the web applications are fulfilling this objective, covering in its entirety all the phases of the crop. The countries that most often use them are Spain, Mexico, Colombia and the US.

Keywords

Phases of the crop Web applications Mobile applications Mobile and web technologies 

References

  1. 1.
    Food and Agriculture Organization for the United Nations: FAO Statistical Yearbook 2013: World food and agriculture. Roma (2013). www.fao.org/publications
  2. 2.
    República del Ecuador: Plan Nacional de Desarrollo 2017-2021 Toda una Vida. Senplades. 1–148 (2017)Google Scholar
  3. 3.
    Cáceres, R., Pol, E., Narváez, L., Puerta, A., Marfà, O.: Web app for real-time monitoring of the performance of constructed wetlands treating horticultural leachates. Agric. Water Manag. 183, 177–185 (2017)CrossRefGoogle Scholar
  4. 4.
    Rose, R., Rose, D.C.: Decision support tools for agriculture: towards effective design and delivery (2016)CrossRefGoogle Scholar
  5. 5.
    Montoya et al., F.G.: A monitoring system for intensive agriculture based on mesh networks and the android system. Comput. Electron. Agric. 99, 14–20 (2013)CrossRefGoogle Scholar
  6. 6.
    Serrano, N., Hernantes, J., Gallardo, G.: Mobile Web Apps. IEEE Softw. 30, 22–27 (2013)CrossRefGoogle Scholar
  7. 7.
    Tranfield, D.: Procedures for performing systematic reviews. Br. J. Manag. 14, 207–222 (2003)CrossRefGoogle Scholar
  8. 8.
    Brann, D., Specialist, E.G., Sciences, S.E., Tech, V.: A Comprehensive Approach Precision Farming : Management is the KEY. Virginia Cooperative Extension, Virginia (2009)Google Scholar
  9. 9.
    Monroy, D.F.G., Hernández, Á.M., Villegas, L.M.: Mobile computing system to support the management of the seed production process in crop genebanks. In: 2014 9th Computing Colombian Conference 9CCC, pp. 109–114 (2014)Google Scholar
  10. 10.
    Kumar, A., Pathak, R.K., Gupta, S.M., Gaur, V.S., Pandey, D.: Systems biology for smart crops and agricultural innovation: filling the gaps between genotype and phenotype for complex traits linked with robust agricultural productivity and sustainability. Omics J. Integr. Biol. 19, 581–601 (2015)CrossRefGoogle Scholar
  11. 11.
    Bueno-Delgado, M.V., Molina-Martínez, J.M., Correoso-Campillo, R., Pavón-Mariño, P.: Ecofert: an android application for the optimization of fertilizer cost in fertigation. Comput. Electron. Agric. 121, 32–42 (2016)CrossRefGoogle Scholar
  12. 12.
    Suprem, A., Mahalik, N., Kim, K.: A review on application of technology systems, standards and interfaces for agriculture and food sector. Comput. Stand. Interfaces 35, 355–364 (2013)CrossRefGoogle Scholar
  13. 13.
    Tan, L.: Cloud-based decision support and automation for precision agriculture in orchards. IFAC-PapersOnLine 49, 330–335 (2016)CrossRefGoogle Scholar
  14. 14.
    Opara, L.U., Vol, E., Opara, L.U., Vol, E.: Traceability in agriculture and food supply chain : a review of basic concepts, technological implications, and future prospects. Food Agric. Environ. 1, 101–106 (2003)Google Scholar
  15. 15.
    Martens, D.C., Westermann, D.T.: Fertilizer application for correcting micronutrient deficiencies (1991)Google Scholar
  16. 16.
    Kaur, S., Dhindsa, K.S.: Comparative study of android-based M-apps for farmers. In: BT - International Conference on Intelligent Computing and Applications. Presented at the (2018)Google Scholar
  17. 17.
    Fairhurst, T.: Fertilizer chooser-an app for iOS and android (2018)Google Scholar
  18. 18.
    Mahajan, G., Prajapati, V., Singh, N.: Fertilizer calculator Goa: an android app (2015)Google Scholar
  19. 19.
    Marin, J., Reimche, C., Arciga, O., Guzman, J.C., Arciga, J., Soria, D.: Nutrienttechnologies (2018). https://nutrienttechnologies.com/about-us/
  20. 20.
  21. 21.
  22. 22.
    PLM MEXICO SOCIEDAD ANONIMA DE CAPITAL VARIABLE: PLM AgroquímicosGoogle Scholar
  23. 23.
  24. 24.
  25. 25.
    Agrobase: Agrobase - weed, disease, insect. https://agrobaseapp.com/
  26. 26.
    Argoncontroldeplagas: Argon Control de Plagas. http://www.argoncontroldeplagas.com/
  27. 27.
    Geocampo agricultura de Precisión: GEOCAMPO. http://site.geocampo.co/
  28. 28.
    AgroPestAlert: Agropestalert. http://agropestalert.com/
  29. 29.
    Smart Farm System: SmartFarm. https://www.smartfarm.ag/
  30. 30.
    Department of Agriculture & Cooperation and Farmers Welfare, Ministry of Agriculture and Farmers Welfare, G. of I.: Crop Insurance CalculatorGoogle Scholar
  31. 31.
    Beyondagronomy: Seeding rate Calculator. http://beyondagronomy.com/apps
  32. 32.
    University of Illinois Extension: Sprayer Calibration Calculator, https://web.extension.illinois.edu/state/apps.cfm
  33. 33.
    Agrile: Pocket Spray Smart. https://www.agrible.com/#mobileapps.%0D
  34. 34.
  35. 35.
    efarmer: eFarmer. https://efarmer.mobi/
  36. 36.
    aquariego: AQUA RIEGOGoogle Scholar
  37. 37.
    aquArson el riego inteligente: aquArson. http://aquarson.com
  38. 38.
    Inventia Agrárica S L: CULTIVAPP. https://www.cultivapp.com/v2.8.7/
  39. 39.
  40. 40.
  41. 41.
    NovaSource: NOVASOURCE. http://www.novasource.com/en
  42. 42.
    Global DPI Lic: Measure Map Lite. https://www.measuremapapp.com/
  43. 43.
    Studio Noframe: GPS Fields Area Measure. https://gps-fields-areameasure.uptodown.com/android
  44. 44.
  45. 45.
    Kimura, H.: Why app store keyword rankings drop dramatically seven days after launchGoogle Scholar
  46. 46.
    Park, S., Kang, J.: Using rule ontology in repeated rule acquisition from similar web sites. IEEE Trans. Knowl. Data Eng. 24, 1106–1119 (2012)CrossRefGoogle Scholar
  47. 47.
    Kumar, A.A., Jaison, J., Prabakaran, K., Escobar, J.H.: Comparative case studies on Indonesian higher education rankings comparative case studies on indonesian higher education rankings (2018)Google Scholar
  48. 48.
    Singal, H., Kohli, S.: Trust necessitated through metrics : estimating the trustworthiness of websites. Proc. – Proc. Comput. Sci. 85, 133–140 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Escuela de Ingeniería en Computación e Informática, Facultad de Ciencias AgrariasUniversidad Agraria del EcuadorGuayaquilEcuador
  2. 2.AgrosoftUrdesa CentralGuayaquilEcuador

Personalised recommendations