Advertisement

Agro-Ecological Zoning of Cacao Cultivation Through Spatial Analysis Methods: A Case Study Taura, Naranjal

  • Sergio Merchán-BenavidesEmail author
  • Carlota Delgado-Vera
  • Maritza Aguirre-Munizaga
  • Vanessa Vergara-Lozano
  • Katty Lagos-Ortiz
  • Tayron Martínez-Carriel
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 901)

Abstract

The cacao value chain is the third most important after bananas and flowers. The sustainability of natural resources is a subject that should be considered in all aspects of production. In this sense arises the Agro-ecological zoning, a strategy used by the FAO (Food and Agriculture Organization), which helps to characterize zones to determine their agricultural potential. In this work, we propose an approach for Agro-ecological zoning of cacao cultivation through spatial analysis methods. The study area is located in the area of Taura, Parroquia Taura, Canton Naranjal, Province of Guayas. The obtained results show that factors such as the lack of irrigation, poor drainage, poor soil depth, salinity, and sodicity have a negative influence on the cultivation of cacao. Therefore, it is recommended that the management of these factors should be improved with a good drainage network for the evacuation of excess water and elimination of salinity.

Keywords

Agro-ecological zoning Cacao Climate GIS Soil 

References

  1. 1.
    Secretaría Técnica del Comité Interinstitucional para el Cambio de la Matriz Productiva- Vicepresidencia del Ecuador, Cepal: Diagnóstico de la Cadena Productiva del Cacao en el Ecuador. Ecuador (2014)Google Scholar
  2. 2.
    ANECACAO busca reconocimiento de Ecuador en el mundo (2015)Google Scholar
  3. 3.
    Wezel, A., Casagrande, M., Celette, F., Vian, J.F., Ferrer, A., Peigné, J.: Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34(1), 1–20 (2014)CrossRefGoogle Scholar
  4. 4.
    FAO: Agro-ecological zoning guidelines. FAO Soils Bull. 76, 3–5 (1996)Google Scholar
  5. 5.
    Uyaguari, A., Espinosa-gallardo, E., Santiago, P.J., Espinel, P., Alberto, F., Calder, C.: Open Source Web Software Architecture Components for Geographic Information Systems in the Last 5 Years: A Systematic Mapping Study, p. 721 (2018)CrossRefGoogle Scholar
  6. 6.
    Burrough, P.A., McDonnell, R., McDonnell, R.A., Lloyd, C.D.: Principles of Geographical Information Systems. OUP, Oxford (2015)Google Scholar
  7. 7.
    Höhn, J., Lehtonen, E., Rasi, S., Rintala, J.: A geographical information system (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland. Appl. Energy 113, 1–10 (2014)CrossRefGoogle Scholar
  8. 8.
    Marsiglia Fuentes, R.M., Torregroza Fuentes, E., Quintana, S.E., García Zapateiro, L.A.: Application of geographic information systems for characterization of preharvest and postharvest factors of squash (cucurbita sp.) in Bolívar Department, Colombia. Indian J. Sci. Technol. 11, 1–10 (2018)Google Scholar
  9. 9.
    Ottinger, M., Clauss, K., Kuenzer, C.: Aquaculture: relevance, distribution, impacts and spatial assessments – a review. Ocean Coast. Manag. 119, 244–266 (2016)CrossRefGoogle Scholar
  10. 10.
    Pereira, L.S., Allen, R.G., Smith, M., Raes, D.: Crop evapotranspiration estimation with FAO56: past and future. Agric. Water Manag. 147, 4–20 (2015)CrossRefGoogle Scholar
  11. 11.
    Food and Agriculture Organization for the United Nations: FAO Statistical Yearbook 2013: World Food and Agriculture. Roma. www.fao.org/publications (2013)
  12. 12.
    Córdova, M., Carrillo-Rojas, G., Crespo, P., Wilcox, B., Célleri, R.: Evaluation of the Penman-Monteith (FAO 56 PM) method for calculating reference evapotranspiration using limited data. Mt. Res. Dev. 35, 230–239 (2015)CrossRefGoogle Scholar
  13. 13.
    Wartenberg, A.C., Blaser, W.J., Gattinger, A., Roshetko, J.M., Noordwijk, M.Van, Six, J.: Does shade tree diversity increase soil fertility in cocoa plantations? Agric. Ecosyst. Environ. 248, 190–199 (2017)CrossRefGoogle Scholar
  14. 14.
    Snoeck, D., Koko, L., Joffre, J., Bastide, P., Jagoret, P.: Cacao nutrition and fertilization. In: Lichtfouse, E. (ed.) Sustainable Agriculture Reviews, vol. 19, pp. 155–202. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  15. 15.
    Altieri, M.A.: Agroecology: the Science of Sustainable Agriculture. CRC Press, Boca RatonGoogle Scholar
  16. 16.
    Zech, W.: Geology and Soils. In: Pancel, L., Köhl, M. (eds.) Tropical Forestry Handbook, pp. 1–191. Springer, Berlin (2016)Google Scholar
  17. 17.
    Mommer, L.: The water relations in cacao (Theobroma cacao L.): Modelling root growth and evapotranspiration. 57 (1999)Google Scholar
  18. 18.
    Carr, M.K.V., Lockwood, G.: The water relations and irrigation requirements of cocoa (Theobroma cacao l.): a review. Exp. Agric. 47, 653–676 (2011)CrossRefGoogle Scholar
  19. 19.
    Corlley, R.: Potential productivity of tropical perenial crops. Exp Agric. Exp. Agric. 19, 217–237 (1983)Google Scholar
  20. 20.
    Salazar, O.V., Ramos-Martín, J., Lomas, P.L.: Livelihood sustainability assessment of coffee and cocoa producers in the Amazon region of Ecuador using household types. J. Rural Stud. 62, 1–9 (2018)CrossRefGoogle Scholar
  21. 21.
    Willer, H., Lernoud, J.: The World of Organic Agriculture 2016: Statistics and Emerging Trends. (2016)Google Scholar
  22. 22.
    Claver-Cortés, E., González Illescas, M., Zaragoza-Sáez, P.C., Vargas Jiménez, M.: Knowledge management in cocoa artisanal firms. The case of “El Oro” province (Ecuador). Przedsiębiorstwo i Reg. 9, 131–141 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Escuela de Ingeniería Agronómica, Facultad de Ciencias Agrarias, Universidad Agraria del EcuadorGuayaquilEcuador
  2. 2.Escuela de Ingeniería en Computación e Informática, Facultad de Ciencias Agrarias, Universidad Agraria del EcuadorGuayaquilEcuador

Personalised recommendations