Advertisement

Presentation of Topographic Information

  • Melanie Corbett
  • Nicholas Maycock
  • Emanuel Rosen
  • David O’Brart
Chapter

Abstract

The raw image obtained by a topography device can be viewed to provide qualitative information about the corneal shape. However it is the analysis of the data and its subsequent display as a colour-coded contour map which adds considerable value to the investigation. Additional displays include cross sections and three-dimensional wire nets.

When viewing the output, before looking at the map, it is important to check the patient details and date, the eye (right or left). The scale lists the step interval of the coloured contours and their units of measurement. When comparing two maps, these should be the same for both maps. The colour scale uses warm colours (red and orange) for the steep areas where the videokeratoscopy mires are close together and the cooler colours (green and blue) for the flatter areas.

Overlays may be applied to the map to show the location of the videokeratoscopy rings, pupil, steep and flat meridian and a measurement grid. Multiple map displays can include various measures at one time point (e.g. including posterior corneal shape or pachymetry), serial maps over time or difference maps (subtraction of an earlier map from a later one).

Numerical and statistical displays can give the actual values at one or more points or calculate indices which summarise a particular feature of the corneal surface (e.g. astigmatism, regularity or asymmetry).

Keywords

Corneal topography Corneal shape Corneal elevation Corneal curvature Corneal power Corneal map Colour-coded contour map Topography cross section Three-dimensional wire net Topography scale Steep cornea Flat cornea Corneal meridian Corneal indices Corneal astigmatism Corneal regularity Corneal irregularity Corneal asymmetry Difference maps 

References

*References Particularly Worth Reading

  1. 1.
    Cairns G, McGhee CN. Orbscan computerized topography: attributes, applications, and limitations. J Cataract Refract Surg. 2005;31(1):205–20.CrossRefGoogle Scholar
  2. 2.
    Belin MW, Khachikian SS. An introduction to understanding elevation-based topography: how elevation data are displayed – a review. Clin Exp Ophthalmol. 2009;37(1):14–29.CrossRefGoogle Scholar
  3. 3.
    Klyce SD. Computer-assisted corneal topography: high resolution graphic presentation and analysis of keratoscopy. Invest Ophthalmol Vis Sci. 1984;25:1426–35.PubMedGoogle Scholar
  4. 4.
    Maguire LJ, Singer DE, Klyce SD. Graphic presentation of computer analysed keratoscope photographs. Arch Ophthalmol. 1987;105:223–30.CrossRefGoogle Scholar
  5. 5.
    *Corbett MC, O’Brart DPS, Stultiens BATh, Jongsma FHM, Marshall J. Corneal topography using a new moiré image-based system. Eur J Implant Refract Surg. 1995;7:353–70.CrossRefGoogle Scholar
  6. 6.
    Young JA, Siegel IM. Isomorphic corneal topography: a clinical approach to 3-D representation of the corneal surface. Refract Corneal Surg. 1993;9:74–8.PubMedGoogle Scholar
  7. 7.
    Warnicki JW, Rehkopf PG, Curtin DY, Burns SA, Arffa RC, Stuart JC. Corneal topography using computer analyzed rasterstereographic images. Appl Opt. 1988;27:1135–40.CrossRefGoogle Scholar
  8. 8.
    Young JA, Siegel IM. Three-dimensional digital subtraction modeling of corneal topography. J Refract Surg. 1995;11:188–93.PubMedGoogle Scholar
  9. 9.
    *Holladay JT. Corneal topography using the Holladay diagnostic summary. J Cataract Refract Surg. 1997;23:209–21.CrossRefGoogle Scholar
  10. 10.
    Huber C, Huber A, Gruber H. Three-dimensional representations of corneal deformations from keratotopographic data. J Cataract Refract Surg. 1997;23:202–8.CrossRefGoogle Scholar
  11. 11.
    *Wilson SE, Klyce SD, Husseini ZM. Standardized color-coded maps for corneal topography. Ophthalmology. 1993;100:1723–7.CrossRefGoogle Scholar
  12. 12.
    Siegel IM. Standardized color-coded corneal maps [letter]. Ophthalmology. 1994;101:795.CrossRefGoogle Scholar
  13. 13.
    Gailitis RP, Lipsitt KL. Standardized color-coded corneal maps [letter]. Ophthalmology. 1994;101:795–6.CrossRefGoogle Scholar
  14. 14.
    Wilson SE, Klyce SD. Standardized color-coded corneal maps [reply]. Ophthalmology. 1994;101:796–7.CrossRefGoogle Scholar
  15. 15.
    Suzuki Y, Araie M, Ohashi Y. Sectorization of the central 30° visual field in glaucoma. Ophthalmology. 1993;100:69–75.CrossRefGoogle Scholar
  16. 16.
    Friedman NE, Zadnik K, Mutti DO, Fusaro RE. Quantifying corneal toricity from videokeratography with Fourier analysis. J Refract Surg. 1996;12:108–13.PubMedGoogle Scholar
  17. 17.
    Holladay JT, Cravy TV, Koch DD. Calculation of surgically induced refractive change following ocular surgery. J Cataract Refract Surg. 1992;18:429–43.CrossRefGoogle Scholar
  18. 18.
    Johnson DA, Haight DH, Kelly SE, Muller J, Swinger CA, Tostanoski J, Odrich MG. Reproducibility of videokeratographic digital subtraction maps after excimer laser photorefractive keratectomy. Ophthalmology. 1996;103:1392–8.CrossRefGoogle Scholar
  19. 19.
    Olsen T, Dam-Johansen M, Beke T, Hjortdal JO. Evaluating surgically induced astigmatism by Fourier analysis of corneal topography data. J Cataract Refract Surg. 1996;22:318–23.CrossRefGoogle Scholar
  20. 20.
    Grimm BB. Communicating with keratography. J Refract Surg. 1996;12:156–9.PubMedGoogle Scholar
  21. 21.
    Rowsey JJ, Reynolds AE, Brown DR. Corneal topography. Corneascope. Arch Ophthalmol. 1981;99:1093–100.CrossRefGoogle Scholar
  22. 22.
    *Vass C, Menapace R. Computerised statistical analysis of corneal topography for the evaluation of changes in corneal shape after surgery. Am J Ophthalmol. 1994;118:177–84.CrossRefGoogle Scholar
  23. 23.
    Vass C, Menapace R, Rainer G, Schulz H. Improved algorithm for statistical batch-by-batch analysis of corneal topographic data. J Cataract Refract Surg. 1997;23:903–12.CrossRefGoogle Scholar
  24. 24.
    Vass C, Menapace R, Amon M, Hirsch U, Yousef A. Batch-by-batch analysis of topographic changes induced by sutured and sutureless clear corneal incisions. J Cataract Refract Surg. 1996;22:324–30.CrossRefGoogle Scholar
  25. 25.
    Dingeldein SA, Klyce SD, Wilson SE. Quantitative descriptors of corneal shape derived from the computer-assisted analysis of photokeratographs. Refract Corneal Surg. 1989;5:372–8.CrossRefGoogle Scholar
  26. 26.
    *Wilson SE, Klyce SD. Quantitative descriptors of corneal topography. A clinical study. Arch Ophthalmol. 1991;109:349–53.CrossRefGoogle Scholar
  27. 27.
    Rabinowitz YS. Videokeratographic indices to aid in screening for keratoconus. J Refract Surg. 1995;11:371–9.PubMedGoogle Scholar
  28. 28.
    Sanders RD, Gills JP, Martin RG. When keratometric measurements do not accurately reflect corneal topography. J Cataract Refract Surg. 1993;19(Suppl):131–5.CrossRefGoogle Scholar
  29. 29.
    Fleming JF. Should refractive surgeons worry about corneal asphericity? Refract Corneal Surg. 1990;6:455–7.Google Scholar
  30. 30.
    Eghbali F, Yeung KK, Maloney RK. Topographic determination of corneal asphericity and its lack of effect on the outcome of radial keratotomy. Am J Ophthalmol. 1995;119:275–80.CrossRefGoogle Scholar
  31. 31.
    Calossi A. Corneal asphericity and spherical aberration. J Refract Surg. 2007;23(5):505–14.CrossRefGoogle Scholar
  32. 32.
    Bottos KM, Leite MT, Aventura-Isidro M, et al. Corneal asphericity and spherical aberration after refractive surgery. J Cataract Refract Surg. 2011;37(6):1109–15.CrossRefGoogle Scholar
  33. 33.
    Borderie VM, Laroche L. Measurement of irregular astigmatism using semimeridian data from videokeratographs. J Refract Surg. 1996;12:595–600.PubMedGoogle Scholar
  34. 34.
    Rabinowitz YS, McDonnell PJ. Computer-assisted corneal topography in keratoconus. Refract Corneal Surg. 1989;5:400–8.PubMedGoogle Scholar
  35. 35.
    Madea N, Klyce SD, Smolek MK, Thompson HW. Automated keratoconus screening with corneal topography analysis. Invest Ophthalmol Vis Sci. 1994;35:2749–57.Google Scholar
  36. 36.
    Burns DM, Johnston FM, Frazer DG, et al. Keratoconus: an analysis of corneal asymmetry. Br J Ophthalmol. 2004;88:1252–5.CrossRefGoogle Scholar
  37. 37.
    Liang F-Q, Geasey SD, del Cerro M, Aquavella JV. A new procedure for evaluating smoothness of corneal surface following 193nm excimer laser ablation. Refract Corneal Surg. 1992;8:459–65.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Howland HC, Howland B. A subjective method for the measurement of monochromatic aberrations of the eye. J Opt Soc Am. 1977;67:1508–18.CrossRefGoogle Scholar
  39. 39.
    Walsh G, Charman WN, Howland HC. Objective technique for the determination of monochromatic aberrations of the human eye. J Opt Soc Am A. 1984;1:987–92.CrossRefGoogle Scholar
  40. 40.
    Liang J, Williams DR. Aberrations and retinal image quality of the normal human eye. J Opt Soc Am A. 1997;14:2873–83.CrossRefGoogle Scholar
  41. 41.
    Oshika T, Klyce SD, Applegate RA. Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis. Am J Ophthalmol. 1999;127:1–7.CrossRefGoogle Scholar
  42. 42.
    Seiler T, Reckmann W, Maloney RK. Effective spherical aberration of the cornea as a quantitative descriptor in corneal topography. J Cataract Refract Surg. 1993;19(Suppl):155–65.CrossRefGoogle Scholar
  43. 43.
    Oliver KM, Hemenger RP, Corbett MC, O’Brart DPS, Verma S, Marshall J, Tomlinson A. Corneal optical aberrations induced by photorefractive keratectomy. J Refract Surg. 1997;13:246–54.PubMedGoogle Scholar
  44. 44.
    Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10.CrossRefGoogle Scholar
  45. 45.
    *Maeda M, Klyce SD, Smolek MK. Neural network classification of corneal topography. Invest Ophthalmol Vis Sci. 1995;36:1327–35.Google Scholar
  46. 46.
    Psaltis D, Brady D, Gu X-G, Lin S. Holography in artificial neural networks. Nature. 1990;343:325–30.CrossRefGoogle Scholar
  47. 47.
    Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Melanie Corbett
    • 1
  • Nicholas Maycock
    • 2
  • Emanuel Rosen
    • 3
  • David O’Brart
    • 4
  1. 1.Imperial College Healthcare NHS TrustLondonUK
  2. 2.University Hospital Coventry and WarwickshireCoventryUK
  3. 3.ManchesterUK
  4. 4.Department of OphthalmologySt. Thomas HospitalLondonUK

Personalised recommendations