Advertisement

Videokeratoscopes

  • Melanie Corbett
  • Nicholas Maycock
  • Emanuel Rosen
  • David O’Brart
Chapter

Abstract

Reflection-based topography systems use the cornea as a convex mirror and view the first Purkinje image. Keratometers use two pairs of images in perpendicular meridian at a diameter of about 3 mm and is a highly accurate measure of the central curvature of regular corneas. Photokeratoscopes view the reflected image of the black and white concentric rings of a Placido disc, providing qualitative shape information across a large area of the cornea.

Videokeratoscopes analyse the position of the edges of the Placido rings in meridians around 360°, giving about 10,000 data points. Reconstruction algorithms applied to each point on the two-dimensional mire image generate a three-dimensional interpretation of the corneal shape. The accuracy centrally is approximately 0.15D, which drops more peripherally and in irregular corneas.

Keywords

Corneal topography Corneal shape Corneal elevation Corneal curvature Corneal power Keratometer Placido disc Photokeratoscope Videokeratoscope Topography mires Topography algorithms Topography accuracy Three-dimensional topography 

References

*References Particularly Worth Reading

  1. 1.
    Ambrosio R Jr, Belin MW. Imaging of the cornea: topography vs tomography. J Refract Surg. 2010;26(11):847–9.CrossRefGoogle Scholar
  2. 2.
    Dabezies, Halladay. Measurement of corneal curvature: keratometer (ophthalmometer). In: Dabezies OH, Cavanagh HD, Farris RL, et al., editors. Contact lenses: the CLAO guide to basic science and clinical practice. Orlando: Grune and Stratton; 1986.. 17.1–29: Dabezies OH, Halladay JT.Google Scholar
  3. 3.
    Use of the keratometer. In: Bennett AG, editor. Optics of contact lenses. London: ADO publishing; 1974.Google Scholar
  4. 4.
    Gutmark R, Guyton DL. Keratometer and its evolving role in ophthalmology. Surv Ophthalmol. 2010;55(5):481–97.CrossRefGoogle Scholar
  5. 5.
    Sunderraj P. Clinical comparison of automated and manual keratometry in pre-operative ocular biometry. Eye. 1992;6:60–2.CrossRefGoogle Scholar
  6. 6.
    Cuaycong MJ, Gay CA, Emery J, Haft EA, Koch DD. Comparison of the accuracy of computerized videokeratoscopy and keratometry for use in intraocular lens calculations. J Cataract Refract Surg. 1993;19(Suppl):178–81.CrossRefGoogle Scholar
  7. 7.
    Husain SE, Kohnen T, Maturi R, Er H, Koch DD. Computerised videokeratography and keratometry in determining intraocular lens calculations. J Cataract Refract Surg. 1996;22:362–6.CrossRefGoogle Scholar
  8. 8.
    Misson GP. Keratometry and postoperative astigmatism. Eye. 1992;6:63–5.CrossRefGoogle Scholar
  9. 9.
    *Sanders RD, Gills JP, Martin RG. When keratometric measurements do not accurately reflect corneal topography. J Cataract Refract Surg. 1993;19 Suppl:131–5.CrossRefGoogle Scholar
  10. 10.
    Varssano D, Rapuano CJ, Luchs JI. Comparison of keratometric values of healthy and diseased eyes measured by Javal keratometer, EyeSys and PAR. J Cataract Refract Surg. 1997;23:419–22.CrossRefGoogle Scholar
  11. 11.
    Rowsey JJ, Reynolds AE, Brown DR. Corneal topography. Corneascope. Arch Ophthalmol. 1981;99:1093–100.CrossRefGoogle Scholar
  12. 12.
    Morlet N. Clinical utility of the Barrett keratoscope with astigmatic dial. Ophthalmic Surg. 1994;25:150–3.PubMedGoogle Scholar
  13. 13.
    Maguire LJ, Klyce SD, Sawelson H, McDonald MB, Kaufman HE. Visual distortion after myopic keratomileusis. Computer analysis of keratoscope photographs. Ophthalmic Surg. 1987;18:352–6.PubMedGoogle Scholar
  14. 14.
    Doss JD, Hutson RL, Rowsey JJ, Brown DR. Method for calculation of corneal profile and power distribution. Arch Ophthalmol. 1981;99:1261–5.CrossRefGoogle Scholar
  15. 15.
    el Hage SG. A computerized corneal topographer for use in refractive surgery. Refract Corneal Surg. 1989;5:418–24.PubMedGoogle Scholar
  16. 16.
    Keller P, Saarloos PP. Perspectives on corneal topography: a review of videokeratoscopy. Clin Exp Optom. 2009;80(1):18–30.CrossRefGoogle Scholar
  17. 17.
    Hannush SB, Crawford SL, Waring GO, Gemmill MC, Lynn MJ, Nizam A. Accuracy and precision of keratometry, photokeratoscopy, and corneal modeling on calibrated steel balls. Arch Ophthalmol. 1989;107:1235–9.CrossRefGoogle Scholar
  18. 18.
    Hannush SB, Crawford SL, Waring GO, Gemmill MC, Lynn MJ, Nizam A. Reproducibility of normal corneal power measurements with a keratometer, photokeratoscope, and video imaging system. Arch Ophthalmol. 1990;108:539–44.CrossRefGoogle Scholar
  19. 19.
    Wilson SE, Verity SM, Conger DL. Accuracy and precision of the corneal analysis system and the topographical analysis system. Cornea. 1992;11:28–35.CrossRefGoogle Scholar
  20. 20.
    Koch DD, Foulks GN, Moran CT, Wakil JS. The corneal EyeSys system: accuracy analysis and reproducibility of first generation prototype. Refract Corneal Surg. 1989;5:424–9.PubMedGoogle Scholar
  21. 21.
    Legeais J-M, Ren Q, Simon G, Parel J-M. Computer-assisted corneal topography: accuracy and reproducibility of the topographic modeling system. Refract Corneal Surg. 1993;9:347–57.PubMedGoogle Scholar
  22. 22.
    Young JA, Talamo JH, Siegel IM. Contour resolution of the EyeSys corneal analysis system. J Cataract Refract Surg. 1995;21:404–6.CrossRefGoogle Scholar
  23. 23.
    Douthwaite WA. EyeSys corneal topography measurements applied to calibrated ellipsoidal surfaces. Br J Ophthalmol. 1995;79:797–801.CrossRefGoogle Scholar
  24. 24.
    Potvin RJ, Fonn D, Sorbara L. Comparison of polycarbonate and steel test surfaces for videokeratography. J Refract Surg. 1995;11:89–91.PubMedGoogle Scholar
  25. 25.
    Belin MW, Ratliff CD. Evaluating data acquisition and smoothing functions of currently available videokeratoscopes. J Cataract Refract Surg. 1996;22:421–6.CrossRefGoogle Scholar
  26. 26.
    Cohen KL, Tripoli NK. Evaluating videokeratoscopes [letter]. J Cataract Refract Surg. 1996;22:871.CrossRefGoogle Scholar
  27. 27.
    Belin MW. Evaluating videokeratoscopes [reply]. J Cataract Refract Surg. 1996;22:871–2.CrossRefGoogle Scholar
  28. 28.
    *Greivenkamp JE, Mellinger MD, Snyder RW, Schwiegerling JT, Lowman AE, Miller JM. Comparison of three videokeratoscopes in measurement of toric test surfaces. J Refract Surg. 1996;12:229–39.Google Scholar
  29. 29.
    *Zadnik K, Friedman NE, Mutti DO. Repeatability of corneal topography: the “corneal field”. J Refract Surg. 1995;11:119–25.Google Scholar
  30. 30.
    Martin R. Cornea and anterior eye assessment with placido-disc keratoscopy, slit scanning evaluation topography and scheimpflug imaging tomography. Indian J Ophthalmol. 2018;66(3):360–6.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang J, Rice DA, Klyce SD. Analysis of the effects of astigmatism and misalignment on corneal surface reconstruction from photokeratoscopic data. Refract Corneal Surg. 1991;7:129–40.Google Scholar
  32. 32.
    Hubbe RE, Foulks GN. The effect of poor fixation on computer-assisted topographic corneal analysis. Ophthalmology. 1994;101:1745–8.CrossRefGoogle Scholar
  33. 33.
    Gao Y, Roberts C. Application of image processing in topographical measurements of the corneal curvature. Proc SPIE. 1994;2132:424–31.CrossRefGoogle Scholar
  34. 34.
    Klyce SD. Computer-assisted corneal topography: high resolution graphic presentation and analysis of keratoscopy. Invest Ophthalmol Vis Sci. 1984;25:1426–35.PubMedGoogle Scholar
  35. 35.
    Edmund C, Sjontoft E. The central-peripheral radius of the normal corneal curvature: a photokeratoscopic study. Acta Ophthalmol. 1985;63:670–7.CrossRefGoogle Scholar
  36. 36.
    Maguire LJ, Singer DE, Klyce SD. Graphic presentation of computer analysed keratoscope photographs. Arch Ophthalmol. 1987;105:223–30.CrossRefGoogle Scholar
  37. 37.
    Wang J, Rice DA. Klyce SD. A new reconstruction algorithm for improvement of corneal topographical analysis. Refract Corneal Surg. 1989;5:379–87.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Tripoli NK, Cohen KL, Holmgren DE, Coggins JM. Assessment of radial aspheres by the arc-step algorithm as implemented by the Keratron keratoscope. Am J Ophthalmol. 1995;120:658–64.CrossRefGoogle Scholar
  39. 39.
    *Tripoli NK, Cohen KL, Obla P, Coggins JM, Holmgren DE. Height measurement of astigmatic test surfaces by a keratoscope that uses plane geometry surface reconstruction. Am J Ophthalmol. 1996;121:668–76.CrossRefGoogle Scholar
  40. 40.
    *Roberts C. Characterisation of the inherent error in a spherically-biased corneal topography system in mapping a radially aspheric surface. J Refract Corneal Surg. 1994;10:103–11.Google Scholar
  41. 41.
    Arffa RC, Klyce SD, Busin M. Keratometry in epikeratophakia. J Refract Surg. 1989;2:61–4.CrossRefGoogle Scholar
  42. 42.
    Stultiens BAT, Jongsma FHM. Frequency modulation as an alternative for local phase in 3D corneal topography. Proc Ophthal Tech. 1994;2126:174–84.Google Scholar
  43. 43.
    Mandell RB. Corneal power correction factor for photorefractive keratectomy. J Cataract Refract Surg. 1994;10:125–8.Google Scholar
  44. 44.
    Wegener A, Laser-Junga H. Photography of the anterior eye segment according to Scheimpflug’s principle: options and limitations – a review. Clin Exp Ophthalmol. 2009;37(1):144–54.CrossRefGoogle Scholar
  45. 45.
    Oliveira CM, Ribeiro C, Franco S. Corneal imaging with slit-scanning and Scheimpflug imaging techniques. Clin Exp Optom. 2011;94(1):33–42.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Melanie Corbett
    • 1
  • Nicholas Maycock
    • 2
  • Emanuel Rosen
    • 3
  • David O’Brart
    • 4
  1. 1.Imperial College Healthcare NHS TrustLondonUK
  2. 2.University Hospital Coventry and WarwickshireCoventryUK
  3. 3.ManchesterUK
  4. 4.Department of OphthalmologySt. Thomas HospitalLondonUK

Personalised recommendations