Some Difference Algorithms for Nonlinear Klein-Gordon Equations

  • Asuman Zeytinoglu
  • Murat SariEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11189)


In this study, sixth and eighth-order finite difference schemes combined with a third-order strong stability preserving Runge-Kutta (SSP-RK3) method are employed to cope with the nonlinear Klein-Gordon equation, which is one of the important mathematical models in quantum mechanics, without any linearization or transformation. Various numerical experiments are examined to verify the applicability and efficiency of the proposed schemes. The results indicate that the corresponding schemes are seen to be reliable and effectively applicable. Another salient feature of these algorithms is that they achieve high-order accuracy with relatively less number of grid points. Therefore, these schemes are realized to be a good option in dealing with similar processes represented by partial differential equations.


Klein-Gordon equation Nonlinear processes High-order finite difference scheme Strong stability preserving Runge-Kutta 


  1. 1.
    Arodz, H., Hadasz, L.: Lectures on Classical and Quantum Theory of Fields. Springer, London (2010). Scholar
  2. 2.
    Dodd, R.K., Eilbeck, I.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982)zbMATHGoogle Scholar
  3. 3.
    Cao, W.M., Guo, B.Y.: Fourier collocation method for solving nonlinear Klein-Gordon equation. J. Comput. Phys. 108, 296–305 (1993)MathSciNetCrossRefGoogle Scholar
  4. 4.
    El-Sayed, S.M.: The decomposition method for studying the Klein-Gordon equation. Chaos Soliton. Fract. 18, 1025–1030 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Inc, M., Ergut, M., Evans, D.J.: An efficient approach to the Klein-Gordon equation: an application of the decomposition method. Int. J. Simul. Process Model. 2, 20–24 (2006)CrossRefGoogle Scholar
  6. 6.
    Dehghan, M., Shokri, A.: Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J. Comput. Appl. Math. 230, 400–410 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bratsos, A.G.: On the numerical solution of the Klein-Gordon equation. Numer. Methods Partial Differ. Equ. 25, 939–951 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Yin, F., Tian, T., Song, J., Zhu, M.: Spectral methods using Legendre wavelets for nonlinear Klein/Sine-Gordon equation. J. Comput. Appl. Math. 275, 321–334 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Khuri, S.A., Sayfy, A.: A spline collocation approach for the numerical solution of a generalized nonlinear Klein-Gordon equation. Appl. Math. Comput. 216, 1047–1056 (2010)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Li, Q., Ji, Z., Zheng, Z., Liu, H.: Numerical solution of nonlinear Klein-Gordon equation using Lattice Boltzmann method. Appl. Math. 2, 1479–1485 (2011)CrossRefGoogle Scholar
  11. 11.
    Mittal, R.C., Bhatia, R.: Numerical solution of nonlinear system of Klein-Gordon equations by cubic B-spline collocation method. Int. J. Comput. Math. 92, 2139–2159 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sarboland, M., Aminataei, A.: Numerical solution of the nonlinear Klein-Gordon equation using multiquadratic quasi-interpolation scheme. Univ. J. Appl. Math. 3, 40–49 (2015)Google Scholar
  13. 13.
    Guo, P.F., Liew, K.M., Zhu, P.: Numerical solution of nonlinear Klein-Gordon equation using the element-free kp-Ritz method. Appl. Math. Model. 39, 2917–2928 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chang, C.W., Liu, C.S.: An implicit Lie-group iterative scheme for solving the nonlinear Klein-Gordon and sine-Gordon equations. Appl. Math. Model. 40, 1157–1167 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sankaranarayanan, S., Shankar, N.J., Cheong, H.F.: Three-dimensional finite difference model for transport of conservative pollutants. Ocean Eng. 25, 425–442 (1998)CrossRefGoogle Scholar
  16. 16.
    Sari, M., Gurarslan, G., Zeytinoglu, A.: High-order finite difference schemes for the solution of the generalized Burgers-Fisher equation. Commun. Numer. Methods Eng. 27, 1296–1308 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Suleyman Demirel UniversityIspartaTurkey
  2. 2.Yildiz Technical UniversityIstanbulTurkey

Personalised recommendations