Some Difference Algorithms for Nonlinear Klein-Gordon Equations
Abstract
In this study, sixth and eighth-order finite difference schemes combined with a third-order strong stability preserving Runge-Kutta (SSP-RK3) method are employed to cope with the nonlinear Klein-Gordon equation, which is one of the important mathematical models in quantum mechanics, without any linearization or transformation. Various numerical experiments are examined to verify the applicability and efficiency of the proposed schemes. The results indicate that the corresponding schemes are seen to be reliable and effectively applicable. Another salient feature of these algorithms is that they achieve high-order accuracy with relatively less number of grid points. Therefore, these schemes are realized to be a good option in dealing with similar processes represented by partial differential equations.
Keywords
Klein-Gordon equation Nonlinear processes High-order finite difference scheme Strong stability preserving Runge-KuttaReferences
- 1.Arodz, H., Hadasz, L.: Lectures on Classical and Quantum Theory of Fields. Springer, London (2010). https://doi.org/10.1007/978-3-642-15624-3CrossRefzbMATHGoogle Scholar
- 2.Dodd, R.K., Eilbeck, I.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982)zbMATHGoogle Scholar
- 3.Cao, W.M., Guo, B.Y.: Fourier collocation method for solving nonlinear Klein-Gordon equation. J. Comput. Phys. 108, 296–305 (1993)MathSciNetCrossRefGoogle Scholar
- 4.El-Sayed, S.M.: The decomposition method for studying the Klein-Gordon equation. Chaos Soliton. Fract. 18, 1025–1030 (2003)MathSciNetCrossRefGoogle Scholar
- 5.Inc, M., Ergut, M., Evans, D.J.: An efficient approach to the Klein-Gordon equation: an application of the decomposition method. Int. J. Simul. Process Model. 2, 20–24 (2006)CrossRefGoogle Scholar
- 6.Dehghan, M., Shokri, A.: Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J. Comput. Appl. Math. 230, 400–410 (2009)MathSciNetCrossRefGoogle Scholar
- 7.Bratsos, A.G.: On the numerical solution of the Klein-Gordon equation. Numer. Methods Partial Differ. Equ. 25, 939–951 (2009)MathSciNetCrossRefGoogle Scholar
- 8.Yin, F., Tian, T., Song, J., Zhu, M.: Spectral methods using Legendre wavelets for nonlinear Klein/Sine-Gordon equation. J. Comput. Appl. Math. 275, 321–334 (2015)MathSciNetCrossRefGoogle Scholar
- 9.Khuri, S.A., Sayfy, A.: A spline collocation approach for the numerical solution of a generalized nonlinear Klein-Gordon equation. Appl. Math. Comput. 216, 1047–1056 (2010)MathSciNetzbMATHGoogle Scholar
- 10.Li, Q., Ji, Z., Zheng, Z., Liu, H.: Numerical solution of nonlinear Klein-Gordon equation using Lattice Boltzmann method. Appl. Math. 2, 1479–1485 (2011)CrossRefGoogle Scholar
- 11.Mittal, R.C., Bhatia, R.: Numerical solution of nonlinear system of Klein-Gordon equations by cubic B-spline collocation method. Int. J. Comput. Math. 92, 2139–2159 (2015)MathSciNetCrossRefGoogle Scholar
- 12.Sarboland, M., Aminataei, A.: Numerical solution of the nonlinear Klein-Gordon equation using multiquadratic quasi-interpolation scheme. Univ. J. Appl. Math. 3, 40–49 (2015)Google Scholar
- 13.Guo, P.F., Liew, K.M., Zhu, P.: Numerical solution of nonlinear Klein-Gordon equation using the element-free kp-Ritz method. Appl. Math. Model. 39, 2917–2928 (2015)MathSciNetCrossRefGoogle Scholar
- 14.Chang, C.W., Liu, C.S.: An implicit Lie-group iterative scheme for solving the nonlinear Klein-Gordon and sine-Gordon equations. Appl. Math. Model. 40, 1157–1167 (2016)MathSciNetCrossRefGoogle Scholar
- 15.Sankaranarayanan, S., Shankar, N.J., Cheong, H.F.: Three-dimensional finite difference model for transport of conservative pollutants. Ocean Eng. 25, 425–442 (1998)CrossRefGoogle Scholar
- 16.Sari, M., Gurarslan, G., Zeytinoglu, A.: High-order finite difference schemes for the solution of the generalized Burgers-Fisher equation. Commun. Numer. Methods Eng. 27, 1296–1308 (2011)MathSciNetzbMATHGoogle Scholar
- 17.Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRefGoogle Scholar