Advertisement

Application of WRF-CMAQ Model System for Analysis of Sulfur and Nitrogen Deposition over Bulgaria

  • Dimiter Syrakov
  • Emilia GeorgievaEmail author
  • Maria Prodanova
  • Elena Hristova
  • Ilian Gospodinov
  • Kiril Slavov
  • Blagorodka Veleva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11189)

Abstract

The advanced air quality modelling system WRF-CMAQ is applied to estimate the spatial distribution of sulfur and nitrogen wet deposition on seasonal basis for 2016 and 2017. The numerical system is set-up for nested domains, from European scale (d1-81 km resolution) to country level (d3-9 km resolution) to account for transport and chemistry processes taking place over broad range of scales and impacting the deposition at given location. A precipitation bias adjustment approach is applied to all grid nodes of domain d3 in order to reduce effects of precipitation overestimation by the model. The effect of the bias adjustment on the seasonal deposition pattern is discussed. The approach leads to 25% decrease in annual wet depositions for the country.

Keywords

Depositions Modelling Precipitation chemistry 

Notes

Acknowledgements

This study was performed with the financial support from the Bulgarian National Science Fund trough contract N. DN-04/4-15.12.2016. We acknowledge TNO for providing emission data, US EPA and US NCEP for providing free-of-charge air quality models and meteorological data.

References

  1. 1.
    EEA, 2017: Air Quality in Europe-2017 Report, European Environmental Agency, Copenhagen (2017). ISBN 978-92-9213-921-6, Publication Office of EC-Luxembourg, 80 pp (2017)Google Scholar
  2. 2.
    Tørseth, K., et al.: Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos. Chem. Phys. 12, 5447–5481 (2012).  https://doi.org/10.5194/acp-12-5447-2012CrossRefGoogle Scholar
  3. 3.
    Im, U., et al.: Atmospheric deposition of nitrogen and sulfur over southern Europe with focus on the Mediterranean and the Black Sea. Atmos. Environ. 81, 660–670 (2013).  https://doi.org/10.1016/j.atmosenv.2013.09.048CrossRefGoogle Scholar
  4. 4.
    Appel, K.W., et al.: A multi-resolution assessment of the Community Multiscale Air Quality (CMAQ) model v4.7 wet deposition estimates for 2002–2006. Geosci. Model Dev. 4, 357–371 (2011).  https://doi.org/10.5194/gmd-4-357-2011CrossRefGoogle Scholar
  5. 5.
    Vivanco, M.G., Theobald, M.R., García-Gómez, H., Garrido, J.L., Prank, M., Galmarini, S.: Modelled deposition of nitrogen and sulfur in Europe estimated by 14 air quality model-systems: evaluation, effects of changes in emissions and implications for habitat protection, Atmos. Chem. Phys. Discuss. (2018).  https://doi.org/10.5194/acp-2018-104
  6. 6.
    Ge, B.Z., Wang, Z.F., Xu, X.B., Wu, J.B., Yu, X.L., Li, J.: Wet deposition of acidifying substances in different regions of China and the rest of East Asia: modeling with updated NAQPMS. Environ. Pollut. 187, 10–21 (2014).  https://doi.org/10.1016/j.envpol.2013.12.014CrossRefGoogle Scholar
  7. 7.
    Iordanova, L.: Local and advective characteristics of the precipitations’ chemical composition in Sofia, Bulgaria. Compt. Rend. Acad. Bulg. Sci. 63(2), 295–302 (2010)Google Scholar
  8. 8.
    Hristova, E.: Chemical composition of precipitation in urban area. Bul. J. Meteo Hydro. 22(1–2), 41–49 (2017)Google Scholar
  9. 9.
    Syrakov, D., Prodanova, M., Georgieva, E., Hristova, E.: Applying WRF-CMAQ models for assessment of sulfur and nitrogen deposition in Bulgaria for years 2016 and 2017. Intern. J. Env. Pollut. (submitted in April 2018)Google Scholar
  10. 10.
    Syrakov, D., et al.: A multi-domain operational chemical weather forecast system. In: Lirkov, I., et al. (Eds.) LSSC 2013. LNCS, vol. 8353, pp. 413–420. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Skamarock, W.C., Klemp, J.B.: A time-split non-hydrostatic atmospheric model. J. Comput. Phys. 227, 3465–3485 (2008).  https://doi.org/10.1016/j.jcp.2007.01.037MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Byun, D., Schere, K.L.: Review of the governing equations, computational algorithms and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 59, 51–77 (2006).  https://doi.org/10.1115/1.2128636CrossRefGoogle Scholar
  13. 13.
    Kuenen, J.J.P., Visschedijk, A.J.H., Jozwicka, M., Denier van der Gon, H.A.C.: TNO-MACC\(\_\)II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmos. Chem. Phys. 14, 10963–10976 (2014).  https://doi.org/10.5194/acp-14-10963-2014CrossRefGoogle Scholar
  14. 14.
    Georgieva, E., Hristova, E., Syrakov, D., Prodanova, M., Batchvarova, E.: Preliminary evaluation of CMAQ modelled wet deposition of sulphur and nitrogen over Bulgaria. In: Proceedings of the \(18^{\text{th}}\) International Conference on HARMO18, 9–12 October 2017, Bologna, Italy, pp. 51–55 (2017)Google Scholar
  15. 15.
  16. 16.
    Cressman, G.P.: An operational objective analysis system. Mon. Weather Rev. 87, 367–374 (1959)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Institute of Meteorology and HydrologyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations