Advertisement

STARDEX and ETCCDI Climate Indices Based on E-OBS and CARPATCLIM

Part One: General Description
  • Hristo ChervenkovEmail author
  • Kiril Slavov
  • Vladimir Ivanov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11189)

Abstract

The paper presents a suite of 26 datasets of climate indices on monthly, seasonal and annual basis, as well as linear trend and statistical significance estimation for the considered time windows. They are calculated with the standard software of the STARDEX and ETCCDI international projects correspondingly, with data from the ECA&D E-OBS and CARPATCLIM gridded databases. The database of climate indices presented in this paper, named ClimData, is intended to serve as a convenient, barrier free and versatile tool for research. The present article, which is part one of more common study, is dedicated on the description of the motivation for the creation, the content, structure and the access point of ClimData.

Keywords

Climate indices E-OBS CARPATCLIM STARDEX ETCCDI ClimData database 

References

  1. 1.
    Alexander, L.V., Arblaster, J.M.: Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int. J. Climatol. 29(3), 417–435 (2009).  https://doi.org/10.1002/joc.1730CrossRefGoogle Scholar
  2. 2.
    Alexander, L.V., et al.: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 111(D5) (2006).  https://doi.org/10.1029/2005jd006290
  3. 3.
    Birsan, M.V., Dumitrescu, A., Micu, D.M., Cheval, S.: Changes in annual temperature extremes in the Carpathians since AD 1961. Nat. Hazards 74(3), 1899–1910 (2014).  https://doi.org/10.1007/s11069-014-1290-5CrossRefGoogle Scholar
  4. 4.
    Chervenkov, H., Tsonevsky, I., Slavov, K.: Drought events assessment and trend estimation-results from the analysis of long-term time series of the standardized precipitation index. C. R. Acad. Bulg. Sci. 69(8), 983–994 (2016)Google Scholar
  5. 5.
    Dosio, A.: Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models. J. Geophys. Res.: Atmos. 121(10), 5488–5511 (2016).  https://doi.org/10.1002/2015jd024411CrossRefGoogle Scholar
  6. 6.
    Frich, P., et al.: Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 19(3), 193–212 (2002)CrossRefGoogle Scholar
  7. 7.
    Groisman, P.Y., et al.: Changes in the probability of heavy precipitation: Important indicators of climatic change. Clim. Change 42(1), 243–283 (1999).  https://doi.org/10.1023/a:1005432803188CrossRefGoogle Scholar
  8. 8.
    Haylock, M.R., et al.: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res.: Atmos. 113(D20), D20119 (2008).  https://doi.org/10.1029/2008JD010201CrossRefGoogle Scholar
  9. 9.
    Hofstra, N., New, M., McSweeney, C.: The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Clim. Dyn. 35(5), 841–858 (2009).  https://doi.org/10.1007/s00382-009-0698-1CrossRefGoogle Scholar
  10. 10.
    Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1–2), 81–93 (1938).  https://doi.org/10.1093/biomet/30.1-2.81CrossRefzbMATHGoogle Scholar
  11. 11.
    Kyselý, J., Plavcová, E.: A critical remark on the applicability of E-OBS European gridded temperature data set for validating control climate simulations. J. Geophys. Res. 115(D23) (2010).  https://doi.org/10.1029/2010jd014123
  12. 12.
    Lakatos, M., Szentimrey, T., Bihari, Z., Szalai, S.: Investigation of climate extremes in the Carpathian region on harmonized data. In: International Scientific Conference on Environmental Changes and Adaptation Strategies, September 2013Google Scholar
  13. 13.
    Lenderink, G.: Exploring metrics of extreme daily precipitation in a large ensemble of regional climate model simulations. Clim. Res. 44(2–3), 151–166 (2010).  https://doi.org/10.3354/cr00946CrossRefGoogle Scholar
  14. 14.
    Malcheva, K., Chervenkov, H., Marinova, T.: Winter severity assessment on the basis of measured and reanalysis data. In: 16th International Multidisciplinary Scientific GeoConference SGEM 2016, pp. 719–726. SGEM (2016)Google Scholar
  15. 15.
    Mann, H.B.: Nonparametric tests against trend. Econometrica 13(3), 245–259 (1945)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Moberg, A., et al.: Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J. Geophys. Res. 111(D22), 1–25 (2006).  https://doi.org/10.1029/2006jd007103CrossRefGoogle Scholar
  17. 17.
    Pachauri, R.K., Meyer, L.A.: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the 5th Assessment Report of the Intergovernmental Panel on Climate Change. Tech. rep., IPCC (2014)Google Scholar
  18. 18.
    Sillmann, J., Röckner, E.: Indices for extreme events in projections of anthropogenic climate change. Clim. Change 86(1–2), 83–104 (2007).  https://doi.org/10.1007/s10584-007-9308-6CrossRefGoogle Scholar
  19. 19.
    Szalai, S., et al.: Climate of the Greater Carpathian Region. Final Technical Report. Tech. rep., JRC (2013)Google Scholar
  20. 20.
    Szentimrey, T., Bihari, Z., Lakatos, M., Szalai, S.: Mathematical, methodological questions concerning the spatial interpolation of climate elements. In: Proceedings from the Second Conference on Spatial Interpolation in Climatology and Meteorology (2009)Google Scholar
  21. 21.
    Tank, A.M.G.K., Können, G.P.: Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J. Clim. 16(22), 3665–3680 (2003). 10.1175/1520-0442(2003)016\(<\)3665:tiiodt\(>\)2.0.co;2Google Scholar
  22. 22.
    Tebaldi, C., Hayhoe, K., Arblaster, J.M., Meehl, G.A.: Going to the extremes, an intercomparison of model-simulated historical and future changes in extreme events. Clim. Change 79(3–4), 185–211 (2006).  https://doi.org/10.1007/s10584-006-9051-4CrossRefGoogle Scholar
  23. 23.
    Zhang, X., Hegerl, G., Zwiers, F.W., Kenyon, J.: Avoiding in homogeneity in percentile-based indices of temperature extremes. J. Clim. 18(11), 1641–1651 (2005).  https://doi.org/10.1175/jcli3366.1CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Institute of Meteorology and HydrologyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.National Institute in Geophysics, Geodesy and GeographyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations