Advertisement

Mathematical Modeling: Interdisciplinary Similarity Studies

  • Agnieszka Bielińska
  • Mikołaj Majkowicz
  • Piotr Wa̧żEmail author
  • Dorota Bielińska-Wa̧ż
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11189)

Abstract

Similarity maps are proposed as mathematical models that can be used in different areas of science. Using this kind of a graphical representation one can reveal the properties that determine similarity or dissimilarity of the considered objects. Several new similarity maps have been created.

Keywords

Mathematical modeling Similarity studies Descriptors 

References

  1. 1.
    Wa̧ż, P., Bielińska-Wa̧ż, D.: 3D-dynamic representation of DNA sequences. J. Mol. Model. 20, 2141 (2014)CrossRefGoogle Scholar
  2. 2.
    Wa̧ż, P., Bielińska-Wa̧ż, D.: Non-standard similarity/dissimilarity analysis of DNA sequences. Genomics 104, 464–471 (2014)CrossRefGoogle Scholar
  3. 3.
    Wa̧ż, P., Bielińska-Wa̧ż, D.: 3D-dynamic graphs as a classification tool of DNA sequences. In: Todorov, M.D. (ed.) 8th International Conference on Promoting the Application of Mathematics in Technical and Natural Sciences (AMiTaNS 2016), 22–27 June 2016, Albena, Bulgaria, AIP Conference Proceedings, vol. 1773, Art. no. 060007 (2016)Google Scholar
  4. 4.
    Wa̧ż, P., Bielińska-Wa̧ż, D., Pleskacz, A., Strobel, A.: Identification of stellar spectra using methods of statistical spectroscopy. Acta Phys. Pol. B 39, 1993–2001 (2008)Google Scholar
  5. 5.
    Wa̧ż, P., Bielińska-Wa̧ż, D., Strobel, A., Pleskacz, A.: Statistical indicators of astrophysical parameters. Acta Astron. 60, 283–293 (2010)Google Scholar
  6. 6.
    Bielińska-Wa̧ż, D., Wa̧ż, P., Basak, S.C.: Similarity studies using statistical and genetical methods. J. Math. Chem. 42, 1003–1013 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bielińska, A., Majkowicz, M., Wa̧ż, P., Bielińska-Wa̧ż, D.: Overall quality of life and general health - changes related to the retirement threshold. In: Murata, Y., et al. (ed.) eTELEMED 2018 The Tenth International Conference on eHealth, Telemedicine, and Social Medicine, 25–29 March 2018, Rome, Italy, pp. 1–5. XPS IARIA Press, Rome (2018)Google Scholar
  8. 8.
    Bielińska, A., Majkowicz, M., Wa̧ż, P., Bielińska-Wa̧ż, D.: Influence of the education level on health of elderly people. In: Murata, Y., et al. (ed.) eTELEMED 2018 The Tenth International Conference on eHealth, Telemedicine, and Social Medicine, 25–29 March 2018, Rome, Italy, pp. 6–11. XPS IARIA Press, Rome (2018)Google Scholar
  9. 9.
    Randić, M., Plavšić, D.: Novel spectral representation of RNA secondary structure without loss of information. Chem. Phys. Lett. 476, 277–280 (2009)CrossRefGoogle Scholar
  10. 10.
    Zhang, Z., et al.: ColorSquare: a colorful square visualization of DNA sequences. MATCH Commun. Math. Comput. Chem. 68, 621–637 (2012)MathSciNetGoogle Scholar
  11. 11.
    Liao, B., Xiang, Q., Cai, L., Cao, Z.: A new graphical coding of DNA sequence and its similarity calculation. Phys. A 392, 4663–4667 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ping, P.Y., Zhu, X.Y., Wang, L.: Similarities/dissimilarities analysis of protein sequences based on PCA-FFT. J. Biol. Syst. 25, 29–45 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Yang, L.P., Zhang, W.L.: A multiresolution graphical representation for similarity relationship and multiresolution clustering for biological sequences. J. Comput. Biol. 24, 299–310 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hirschfeld, H.O.: A connection between correlation and contingency. Proc. Camb. Philos. Soc. 31, 520–524 (1935)CrossRefGoogle Scholar
  15. 15.
    Benzécri, J.-P.: L’Analyse des Données. L’Analyse des Correspondances, vol. II, Paris, France, Dunod (1973)Google Scholar
  16. 16.
    Greenacre, M.: Correspondence Analysis in Practice, 2nd edn. Chapman & Hall/CRC, London (2007)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Wołowicka, L.: Quality of Life in Medical Sciences, pp. 231–281. Wydawnictwo Uczelniane AM w Poznaniu, Poznań (2001)Google Scholar
  19. 19.
    Wa̧ż, P., Bielińska-Wa̧ż, D., Nandy, A.: Descriptors of 2D-dynamic graphs as a classification tool of DNA sequences. J. Math. Chem. 52, 132–140 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Agnieszka Bielińska
    • 1
  • Mikołaj Majkowicz
    • 2
  • Piotr Wa̧ż
    • 3
    Email author
  • Dorota Bielińska-Wa̧ż
    • 4
  1. 1.Department of Quality of Life ResearchMedical University of GdańskGdańskPoland
  2. 2.Department of Public HealthPomeranian University in SłupskSłupskPoland
  3. 3.Department of Nuclear MedicineMedical University of GdańskGdańskPoland
  4. 4.Department of Radiological Informatics and StatisticsMedical University of GdańskGdańskPoland

Personalised recommendations