Advertisement

Parallel SFF-SANS Study of Structure of Polydispersed Vesicular Systems

  • Maxim BashashinEmail author
  • Elena Zemlyanaya
  • Mikhail Kiselev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11189)

Abstract

One of the important trends of modern nanobiophysics is the development of the drug delivery systems on the basis unilamellar vesicles (ULVs) of phospholipids. The small angle scattering of neutrons (SANS) and of X-rays (SAXS) are well known tools for investigation of the structure of the nanosystems like ULVs. In our study, analysis of SANS/SAXS experimental data is based on the separated form factors method (SFF). Effectiveness of parallel implementation of the SFF approach on the basis of MPI-version of the local minimization procedure is investigated; the results of SFF-SANS analysis of structure of the phospholipid ULVs are presented.

Keywords

Phospholipid Small angle scattering Minimization procedure Parallel algorithm 

References

  1. 1.
    Das, S., Chaudhury, A.: Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSci. Tech. 12, 62–76 (2011)CrossRefGoogle Scholar
  2. 2.
    Martins, S., Sarmento, B., Ferreira, D.C., Souto, E.B.: Lipid-based colloidal carriers for peptide and protein delivery - liposomes versus lipid nanoparticles. Int. J. Nanomed. 2, 595–607 (2007)Google Scholar
  3. 3.
    Kiselev, M.A., Zemlyanaya, E.V., Aswal, V.K., Neubert, R.: What can we learn about the lipid vesicle structure from the small angle neutron scattering experiment? Eur. Biophys. J. 35, 477–493 (2006)CrossRefGoogle Scholar
  4. 4.
    Zhabitskaya, E.I., Zhabitsky, M.V.: Asynchronous differential evolution with adaptive correlation matrix. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, NY, USA, pp. 455–462 (2013). ISBN 978-1-4503-1963-8Google Scholar
  5. 5.
    Kiselev, M.A., Zemlyanaya, E.V., Zhabitskaya, E.I., Aksenov, V.L.: Investigation into the structure of unilamellar dimyristoylphosphocholine vesicles in aqueous sucrose solutions by small-angle neutron and X-ray scattering. Crystallogr. Rep. 60, 143–147 (2015)CrossRefGoogle Scholar
  6. 6.
    Kurbatov, V.S., Silin, I.N.: New method for minimizing regular functions with constraints on parameter region. Nucl. Instr. Meth. A 345, 346–350 (1994)CrossRefGoogle Scholar
  7. 7.
    Sitnik, I.M.: The new version of the FUMILIM minimization package. Comput. Phys. Comm. 209, 199–204 (2016)CrossRefGoogle Scholar
  8. 8.
    Zemlyanaya, E.V., et al.: Structure of unilamellar vesicles:numerical analysis based on small-angle neutron scattering data. Crystallogr. Rep. 51(Suppl. 1), S22–S26 (2006)CrossRefGoogle Scholar
  9. 9.
    Kiselev, M.A., Zemlyanaya, E.V., Ryabova, N.Y., Hauss, T., Dante, S., Lombardo, D.: Water distribution function across the curved lipid bilayer: SANS study. Chem. Phys. 345, 185–190 (2008)CrossRefGoogle Scholar
  10. 10.
    Kiselev, M.A., et al.: Influence of ceramide on the internal structure and hydration of the phospholipid bilayer studied by neutron and X-ray scattering. Appl. Phys. A Mater. Sci. 116, 319–325 (2014)CrossRefGoogle Scholar
  11. 11.
    Kiselev, M.A., Zemlyanaya, E.V.: Dimethyl Sulfoxide-Induced dehydration of the intermembrane space of dipalmitoylphosphatidylcholine multilamellar vesicles: neutron and synchrotron diffraction study. Crystallogr. Rep. 62(5), 763–767 (2017)CrossRefGoogle Scholar
  12. 12.
    Bashashin, M., Zemlyanaya, E., Zhabitskaya, E., Kiselev, M., Sapozhnikova, T.: Determination of the vesicular systems parameters: parallel implementation and analysis of the PTNS vesicle structure. Eur. Phys. J. Web Conf. 173, 05003 (2018)CrossRefGoogle Scholar
  13. 13.
    Sapozhnikov A. P.: Parallel version of Fumili program. JINR LIT Scientific report 2008–2009. JINR, Publishing Department, Dubna, pp. 96–98 (2009)Google Scholar
  14. 14.
    Archakov, A.I. et al.: Based on botanical phospholipids nanosystem for activation of biologically active compounds, and method of its manufacture (versions). Patent RU 2391966 1, Russian FederationGoogle Scholar
  15. 15.
    Kiselev, M.A., et al.: Influence of trehalose on the structure of unilamellar DMPC vesicles. Colloids Surf. A 256 1–7 (2005)CrossRefGoogle Scholar
  16. 16.
    Zhabitskaya, E., Zemlyanaya, E., Kiselev, M., Gruzinov, A.: The parallel asynchronous differential evolution method as a tool to analyze synchrotronous scattering experimental data from vesicular systems. In: EPJ Web of Conference , vol. 108, p. 02047 (2016)CrossRefGoogle Scholar
  17. 17.
    Kiselev, M.A., Zemlyanaya, E.V., Gruzinov, A.Yu., Zhabitskaya, E.I., Ipatova, O.M., Aksenov, V.L.: Analysis of Vesicular Structure of Nanoparticles in the Phospholipid Based Drug Delivery System using SAXS data. JINR Preprint P3–2017-32, Dubna (2017). Accepted to Crystallography ReportsGoogle Scholar
  18. 18.
    Kiselev, M.A., et al.: Application of small-angle X-ray scattering to the characterization and quantification of the drug transport nanosystem based on thesoybean phosphatidylcholine. J. Pharm. Biomed. Anal. 114, 288–291 (2015)CrossRefGoogle Scholar
  19. 19.
    Zemlyanaya, E.V., et al.: SFF analysis of the small angle scattering data for investigation of a vesicle systems structure. J. Phys. Conf. Ser. 724, 012056 (2016)Google Scholar
  20. 20.
    Zemlyanaya, E.V., et al.: The small-angle neutron scattering data analysis of the phospholipid transport nanosystem structure. J. Phys. Conf. Ser. 1023, 012017 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Dubna State UniversityDubnaRussia

Personalised recommendations