Advertisement

Discrete Fourier Analysis on Lattice Grids

  • Morten A.  Nome
  • Tor SørevikEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11189)

Abstract

Using group theory we describe the relation between lattice sampling grids and the corresponding non-aliasing Fourier basis sets, valid for all 1-periodic lattices. This technique enable us to extend the results established in [16]. We also provide explicit formula for the Lagrange functions and show how the FFT algorithm may be used to compute the expansion coefficients.

Keywords

Trigonometric interpolation Fourier coefficients 

References

  1. 1.
    Bungartz, H., Griebel, M.: Sparse grids. Acta Numer. 13, 1–123 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Fenrick, M.H.: Introduction to the Galois Correspondence. Birkhäuser, Boston (1992)CrossRefGoogle Scholar
  3. 3.
    Kämmerer, L., Kunis, S., Potts, D.: Interpolation lattices for hyperbolic cross trigonometric polynomials. J. Complex. 28(1), 76–92 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kämmerer, L., Potts, D., Volkmer, T.: Approximation of multivariate functions by trigonometric polynomials based on rank-1 lattice sampling. J. Complex. 31(4), 543–576 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Li, H., Sun, J., Xu, Y.: Discrete Fourier analysis, cubature and interpolation on a hexagon and a triangle SIAM. J. Numer. Anal. 46, 1653–1681 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Li, H., Sun, J., Xu, Y.: Cubature formula and interpolation on the cubic domain. Numer. Math. Theory Method Appl. 2, 119–152 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Li, H., Xu, Y.: Discrete Fourier analysis on a dodecahedron and a tetrahedron. Math. Comput. 78, 999–1029 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Li, H., Xu, Y.: Discrete Fourier analysis on fundamental domain and simplex of \(A_d\) lattice in \(d-\)Variables. J. Fourier Anal. Appl. 16, 383–433 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, H., Sun, J., Xu, Y.: Discrete Fourier analysis with lattices on planar domain. Numer. Algorithms 55, 279–300 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lyness, J.N.: An introduction to lattice rules and their generator matrices. IMA J. Numer. Anal. 9, 405–419 (1989)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lyness, J.N.: The canonical forms of a lattice rule. In: Brass, H., Hämmerlin, G. (eds.) Numerical Integration IV. ISNM International Series of Numerical Mathematics, vol. 112, pp. 225–240. Birkhäuser, Basel (1993).  https://doi.org/10.1007/978-3-0348-6338-4_18CrossRefGoogle Scholar
  12. 12.
    Lyness, J.N., Keast, P.: Application of the Smith normal form to the structure of lattice rules. SIAM J. Matrix Anal. Appl. 16(1), 218–231 (1995)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Munthe-Kaas, H.Z.: On group Fourier analysis and symmetry preserving discretizations of PDEs. J. Phys. A 39(19), 5563–5584 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Munthe-Kaas, H., Sørevik, T.: Multidimensional pseudo-spectral methods on lattice grids. Appl. Numer. Math. 62, 155–165 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Smith, H.J.S.: On systems of linear indeterminate equations and congruences. Philos. Trans. Roy. Soc. A 151, 293–326 (1861)CrossRefGoogle Scholar
  16. 16.
    Sørevik, T., Nome, M.A.: Trigonometric interpolation on lattice grids. BIT Numer. Math. 56(1), 341–356 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sloan, I.H., Lyness, J.N.: The representation of lattice quadrature rules as multiple sums. Math. Comput. 52(185), 81–94 (1989)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zenger, C.: Sparse grids. Notes Numer. Fluid Mech. 31, 241–251 (1991)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsNTNUTrondheimNorway
  2. 2.Department of MathematicsUniversity of BergenBergenNorway

Personalised recommendations