Bounds for the Extreme Zeros of Laguerre Polynomials
Conference paper
First Online:
Abstract
By applying well-known techniques such as the Gershgorin Circle Theorem and the Euler-Rayleigh method (the latter assisted by some computer algebra), we obtain new bounds for the extreme zeroes of the n-th Laguerre polynomial. It turns out that these bounds are competitive to some of the known best bounds.
Keywords
Extreme zeros of Laguerre polynomials Gershgorin circle theorem Euler-Rayleigh methodReferences
- 1.Bottema, Q.: Die Nullstellen gewisser durch Rekursionsformeln definierter Polynome. Proc. Amsterdam 34(5), 681–691 (1931)zbMATHGoogle Scholar
- 2.Chihara, T.: An Introduction to Orthogonal Polynomials. Gorn and Breach, New York (1978)zbMATHGoogle Scholar
- 3.Dimitrov, D.K., Nikolov, G.P.: Sharp bounds for the extreme zeros of classical orthogonal polynomials. J. Approx. Theory 162, 1793–1804 (2010)MathSciNetCrossRefGoogle Scholar
- 4.Driver, K., Jordaan, K.: Bounds for extreme zeros of some classical orthogonal polynomials. J. Approx. Theory 164, 1200–1204 (2012)MathSciNetCrossRefGoogle Scholar
- 5.Driver, K., Jordaan, K.: Inequalities for extreme zeros of some classical orthogonal and \(q\)-orthogonal polynomials. Math. Model. Nat. Phenom. 8(1), 48–59 (2013)MathSciNetCrossRefGoogle Scholar
- 6.Gupta, D.P., Muldoon, M.E.: Inequalities for the smallest zeros of Laguerre polynomials and their \(q\)-analogues. J. Ineq. Pure Appl. Math. 8(1) (2007). Article 24Google Scholar
- 7.Hahn, W.: Bericht über die Nullstellen der Laguerreschen und der Hermiteschen Polynome. Jahresber. Deutsch. Math.-Ferein. 44, 215–236 (1933)zbMATHGoogle Scholar
- 8.Ismail, M.E.H., Muldoon, M.E.: Bounds for the small real and purelyimaginary zeros of Bessel and related functions. Met. Appl. Math. Appl. 2, 1–21 (1995)zbMATHGoogle Scholar
- 9.Ismail, M.E.H., Li, X.: Bounds on the extreme zeros of orthogonal polynomials. Proc. Amer. Math. Soc. 115, 131–140 (1992)MathSciNetCrossRefGoogle Scholar
- 10.Krasikov, I.: Bounds for zeros of the Laguerre polynomials. J. Approx. Theory 121, 287–291 (2003)MathSciNetCrossRefGoogle Scholar
- 11.Neumann, E.R.: Beiträge zur Kenntnis der Laguerreschen Polynome. Jahresber. Deutsch. Math.-Ferein 30, 15–35 (1921)zbMATHGoogle Scholar
- 12.Szegő, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society Colloquium Publications, Providence (1975)zbMATHGoogle Scholar
- 13.Van der Waerden, B.L.: Modern Algebra, vol. 1. Frederick Ungar Publishing Co., New York (1949)Google Scholar
- 14.van Dorn, E.: Representations and bounds for zeros of orthogonal polynomials and eigenvalues of sign-symmetric tri-diagonal matrices. J. Approx. Theory 51, 254–266 (1987)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019