Advertisement

A High Order Numerical Method for Solving Nonlinear Fractional Differential Equation with Non-uniform Meshes

  • Lili Fan
  • Yubin YanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11189)

Abstract

We introduce a high-order numerical method for solving nonlinear fractional differential equation with non-uniform meshes. We first transform the fractional nonlinear differential equation into the equivalent Volterra integral equation. Then we approximate the integral by using the quadratic interpolation polynomials. On the first subinterval \([t_{0}, t_{1}]\), we approximate the integral with the quadratic interpolation polynomials defined on the nodes \(t_{0}, t_{1}, t_{2}\) and in the other subinterval \([t_{j}, t_{j+1}], j=1, 2, \dots N-1\), we approximate the integral with the quadratic interpolation polynomials defined on the nodes \(t_{j-1}, t_{j}, t_{j+1}\). A high-order numerical method is obtained. Then we apply this numerical method with the non-uniform meshes with the step size \(\tau _{j}= t_{j+1}- t_{j}= (j+1) \mu \) where \(\mu = \frac{2T}{N (N+1)}\). Numerical results show that this method with the non-uniform meshes has the higher convergence order than the standard numerical methods obtained by using the rectangle and the trapzoid rules with the same non-uniform meshes.

Keywords

Nonlinear fractional differential equation Numerical method Non-uniform meshes 

References

  1. 1.
    Cao, J., Xu, C.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comp. Phys. 238, 154–168 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Deng, W.H.: Short memory principle and a predict-corrector approach for fractional differential equations. J. Comput. Appl. Math. 206, 1768–1777 (2007)Google Scholar
  3. 3.
    Diethelm, K.: Generalized compound quadrature formulae for finite-part integral. IMA J. Numer. Anal. 17, 479–493 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Li, C., Zeng, F.: The finite difference methods for fractional ordinary differential equations. Numer. Funct. Anal. Optim. 34, 149–179 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Liu, Y., Roberts, J., Yan, Y.: A note on finite difference methods for nonlinear fractional differential equations with non-uniform meshes. Int. J. Comput. Math. 95, 1151–1169 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Liu, Y., Roberts, J., Yan, Y.: Detailed error analysis for a fractional Adams method with graded meshes. Numer. Algor. 78(2018), 1195–1216 (2017).  https://doi.org/10.1007/s11075-017-0419-5MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Stynes, M.: Too much regularity may force too much uniqueness. Fractional Calc. Appl. Anal. 19, 1554–1562 (2016)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Stynes, M., O’riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Pal, K., Liu, F., Yan, Y.: Numerical solutions of fractional differential equations by extrapolation. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) FDM 2014. LNCS, vol. 9045, pp. 299–306. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20239-6_32CrossRefGoogle Scholar
  14. 14.
    Quintana-Murillo, J., Yuste, S.B.: A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations. Eur. Phys. J. Spec. Top. 222, 1987–1998 (2013)CrossRefGoogle Scholar
  15. 15.
    Yan, Y., Pal, K., Ford, N.J.: Higher order numerical methods for solving fractional differential equations. BIT Numer. Math. 54, 555–584 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zhao, L., Deng, W.H.: Jacobi-predictor-corrector approach for the fractional ordinary differential equations. Adv. Comput. Math. 40, 137–165 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yuste, S.B., Quintana-Murillo, J.: Fast, accurate and robust adaptive finite difference methods for fractional diffusion equations. Numer. Algor. 71, 207–228 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsLvliang UniversityLvliangPeople’s Republic of China
  2. 2.Department of MathematicsUniversity of ChesterInceUK

Personalised recommendations