A High Order Numerical Method for Solving Nonlinear Fractional Differential Equation with Non-uniform Meshes
Abstract
We introduce a high-order numerical method for solving nonlinear fractional differential equation with non-uniform meshes. We first transform the fractional nonlinear differential equation into the equivalent Volterra integral equation. Then we approximate the integral by using the quadratic interpolation polynomials. On the first subinterval \([t_{0}, t_{1}]\), we approximate the integral with the quadratic interpolation polynomials defined on the nodes \(t_{0}, t_{1}, t_{2}\) and in the other subinterval \([t_{j}, t_{j+1}], j=1, 2, \dots N-1\), we approximate the integral with the quadratic interpolation polynomials defined on the nodes \(t_{j-1}, t_{j}, t_{j+1}\). A high-order numerical method is obtained. Then we apply this numerical method with the non-uniform meshes with the step size \(\tau _{j}= t_{j+1}- t_{j}= (j+1) \mu \) where \(\mu = \frac{2T}{N (N+1)}\). Numerical results show that this method with the non-uniform meshes has the higher convergence order than the standard numerical methods obtained by using the rectangle and the trapzoid rules with the same non-uniform meshes.
Keywords
Nonlinear fractional differential equation Numerical method Non-uniform meshesReferences
- 1.Cao, J., Xu, C.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comp. Phys. 238, 154–168 (2013)MathSciNetCrossRefGoogle Scholar
- 2.Deng, W.H.: Short memory principle and a predict-corrector approach for fractional differential equations. J. Comput. Appl. Math. 206, 1768–1777 (2007)Google Scholar
- 3.Diethelm, K.: Generalized compound quadrature formulae for finite-part integral. IMA J. Numer. Anal. 17, 479–493 (1997)MathSciNetCrossRefGoogle Scholar
- 4.Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)MathSciNetCrossRefGoogle Scholar
- 5.Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)MathSciNetCrossRefGoogle Scholar
- 6.Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)MathSciNetCrossRefGoogle Scholar
- 7.Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)MathSciNetCrossRefGoogle Scholar
- 8.Li, C., Zeng, F.: The finite difference methods for fractional ordinary differential equations. Numer. Funct. Anal. Optim. 34, 149–179 (2013)MathSciNetCrossRefGoogle Scholar
- 9.Liu, Y., Roberts, J., Yan, Y.: A note on finite difference methods for nonlinear fractional differential equations with non-uniform meshes. Int. J. Comput. Math. 95, 1151–1169 (2018)MathSciNetCrossRefGoogle Scholar
- 10.Liu, Y., Roberts, J., Yan, Y.: Detailed error analysis for a fractional Adams method with graded meshes. Numer. Algor. 78(2018), 1195–1216 (2017). https://doi.org/10.1007/s11075-017-0419-5MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Stynes, M.: Too much regularity may force too much uniqueness. Fractional Calc. Appl. Anal. 19, 1554–1562 (2016)MathSciNetzbMATHGoogle Scholar
- 12.Stynes, M., O’riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRefGoogle Scholar
- 13.Pal, K., Liu, F., Yan, Y.: Numerical solutions of fractional differential equations by extrapolation. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) FDM 2014. LNCS, vol. 9045, pp. 299–306. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20239-6_32CrossRefGoogle Scholar
- 14.Quintana-Murillo, J., Yuste, S.B.: A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations. Eur. Phys. J. Spec. Top. 222, 1987–1998 (2013)CrossRefGoogle Scholar
- 15.Yan, Y., Pal, K., Ford, N.J.: Higher order numerical methods for solving fractional differential equations. BIT Numer. Math. 54, 555–584 (2014)MathSciNetCrossRefGoogle Scholar
- 16.Zhao, L., Deng, W.H.: Jacobi-predictor-corrector approach for the fractional ordinary differential equations. Adv. Comput. Math. 40, 137–165 (2014)MathSciNetCrossRefGoogle Scholar
- 17.Yuste, S.B., Quintana-Murillo, J.: Fast, accurate and robust adaptive finite difference methods for fractional diffusion equations. Numer. Algor. 71, 207–228 (2016)MathSciNetCrossRefGoogle Scholar
- 18.Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)MathSciNetCrossRefGoogle Scholar