Advertisement

A Class of Staggered Schemes for the Compressible Euler Equations

  • Raphaele Herbin
  • Jean-Claude LatchéEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11189)

Abstract

We present a class of numerical schemes for the solution of the Euler equations; these schemes are based on staggered discretizations and work either on structured meshes or on general simplicial or tetrahedral/hexahedral meshes. The time discretization is performed by fractional-step algorithms, either based on semi-implicit pressure correction techniques or segregated in such a way that only explicit steps are involved (referred to hereafter as “explicit” variants). These schemes solve the internal energy balance, with corrective terms to ensure the correct capture of shocks, and, more generally, the consistency in the Lax-Wendroff sense. To keep the density, the internal energy and the pressure positive, positivity-preserving convection operators for the mass and internal energy balance equations are designed, using upwinding with respect of the material velocity only. The construction of the fluxes thus does not need any Riemann or approximate Riemann solver, and yields particularly efficient algorithms. The stability is obtained without restriction on the time step for the pressure correction time-stepping and under a CFL-like condition for explicit variants: the preservation of the integral of the total energy over the computational domain and the positivity of the density and of the internal energy are ensured, and entropy estimates are derived.

Keywords

Euler equations Staggered schemes 

References

  1. 1.
    Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws. Birkhauser, Basel (2004)CrossRefGoogle Scholar
  2. 2.
    CALIF\(^3\)S: a software components library for the computation of reactive turbulent flows. https://gforge.irsn.fr/gf/project/isis
  3. 3.
    Crouzeix, M., Raviart, P.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Série Rouge 7, 33–75 (1973)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Dakin, G., Jourdren, H.: High-order accurate Lagrange-remap hydrodynamic schemes on staggered Cartesian grids. Comptes rendus Mathématique 34, 211–217 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gallouët, T., Herbin, R., Latché, J.C.: Kinetic energy control in explicit finite volume discretizations of the incompressible and compressible Navier-Stokes equations. Int. J. Finite Vol. 7(2), 1–6 (2010)MathSciNetGoogle Scholar
  6. 6.
    Gallouët, T., Herbin, R., Latché, J.C., Therme, N.: Entropy estimates for a class of schemes for the Euler equations (2017). arXiv:1707.01297
  7. 7.
    Gastaldo, L., Herbin, R., Latché, J.C., Therme, N.: A MUSCL-type segregated - explicit staggered scheme for the Euler equations. Comput. Fluids 175, 91–110 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Grapsas, D., Herbin, R., Kheriji, W., Latché, J.C.: An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations. SMAI J. Comput. Math. 2, 51–97 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Guillard, H.: Recent developments in the computation of compressible low Mach flows. Flow Turbul. Combust. 76, 363–369 (2006)CrossRefGoogle Scholar
  10. 10.
    Harlow, F., Amsden, A.: A numerical fluid dynamics calculation method for all flow speeds. J. Comput. Phys. 8, 197–213 (1971)CrossRefGoogle Scholar
  11. 11.
    Harlow, F., Welsh, J.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Herbin, R., Kheriji, W., Latché, J.C.: On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations. Math. Model. Numer. Anal. 48, 1807–1857 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Herbin, R., Latché, J.C., Nguyen, T.: Consistent segregated staggered schemes with explicit steps for the isentropic and full Euler equations. Math. Model. Numer. Anal. 52, 893–944 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Larrouturou, B.: How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comput. Phys. 95, 59–84 (1991)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Latché, J.C., Saleh, K.: A convergent staggered scheme for variable density incompressible Navier-Stokes equations. Math. Comput. 87, 581–632 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equ. 8, 97–111 (1992)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics - A Practical Introduction, 3rd edn. Springer, Heidelberg (2009).  https://doi.org/10.1007/b79761CrossRefzbMATHGoogle Scholar
  18. 18.
    Wesseling, P.: Principles of Computational Fluid Dynamics. Springer Series in Computational Mathematics, vol. 29. Springer, Heidelberg (2001).  https://doi.org/10.1007/978-3-642-05146-3CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Aix-Marseille UniversitéMarseilleFrance
  2. 2.Institut de Radioprotection et de Sûreté Nucléaire (IRSN)CadaracheFrance

Personalised recommendations