Advertisement

An Intuitionistic Fuzzy Approach to the Hungarian Algorithm

  • Velichka TranevaEmail author
  • Stoyan Tranev
  • Vassia Atanassova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11189)

Abstract

In the paper a new type of assignment problem is formulated, in which the costs of assigning tasks to candidates are intuitionistic fuzzy pairs. Additional constraints are formulated to the problem: an upper limit to the cost of assigning a particular resource to perform a particular activity and preferences defined in advance for assigning the resources by an index matrix. We propose for the first time the Hungarian algorithm for finding an optimal solution of this new type of assignment problem, based on the concept of index matrices.

Keywords

Assignment problem Decision making Hungarian algorithm Index matrix Intuitionistic fuzzy pair 

References

  1. 1.
    Atanassov, K.T.: Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20–23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci. 1697/84) (2016). (in Bulgarian). Reprinted: Int. J. Bioautom. 20(S1), S1–S6MathSciNetCrossRefGoogle Scholar
  2. 2.
    Atanassov, K.: Generalized index matrices. Comptes rendus de l’Academie Bulgare des Sciences 40(11), 15–18 (1987)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. STUDFUZZ, vol. 283. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29127-2CrossRefzbMATHGoogle Scholar
  4. 4.
    Atanassov, K.: Index Matrices: Towards an Augmented Matrix Calculus. Studies in Computational Intelligence, vol. 573. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10945-9CrossRefzbMATHGoogle Scholar
  5. 5.
    Atanassov, K.: Intuitionistic Fuzzy Logics. Studies in Fuzziness and Soft Computing, vol. 351. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-48953-7CrossRefzbMATHGoogle Scholar
  6. 6.
    Atanassov, K., Szmidt, E., Kacprzyk, J.: On intuitionistic fuzzy pairs. Notes Intuitionistic Fuzzy Sets 19(3), 1–13 (2013)CrossRefGoogle Scholar
  7. 7.
    Kuhn, H.: On certain convex polyhedra. Bull. Am. Math. Soc. 61, 557–558 (1955)Google Scholar
  8. 8.
    Rajaraman, K., Sophia Porchelvi, R., Irene Hepzibah, R.: Ones assignment method to solve intitionistic fuzzy assignment problems. J. Appl. Sci. Comput. 5(8), 252–261 (2018)Google Scholar
  9. 9.
    Traneva, V.: Internal operations over 3-dimensional extended index matrices. Proc. Jangjeon Math. Soc. 18(4), 547–569 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Traneva, V., Tranev, S.: Index Matrices as a Tool for Managerial Decision Making. Publ. House of the Union of Scientists, Bulgaria (2017). (in Bulgarian)Google Scholar
  11. 11.
    Munkres’ Assignment Algorithm. http://csclab.murraystate.edu/~bob.pilgrim/445//munkres.html. Accessed 8 May 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.“Prof. Asen Zlatarov” UniversityBourgasBulgaria
  2. 2.Institute of Biophysics and Biomedical EngineeringBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations