Advertisement

Experimental Results

  • Laith Mohammad Qasim AbualigahEmail author
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 816)

Abstract

This chapter presents the results of the proposed methods to solve the TFSP and TDCP. The general design of the experiments in the first stage is shown in Fig. 5.1. Each experiment starts with the application of the weighting scheme, followed by the FS and DR. Finally, clustering is conducted to determine the performance of the method. Clustering is also conducted in some cases after applying the weighting scheme and the FS to determine the performance of that stage. These methods are investigated using seven standard benchmark text datasets. The results of the length weighting scheme, PSO for the text FS method, and detailed DR technique to enhance the TC technique are introduced in Sect. 5.2.

References

  1. Abualigah, L. M., Khader, A. T., Al-Betar, M. A., & Alomari, O. A. (2017). Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering. Expert Systems with Applications, 84, 24–36.CrossRefGoogle Scholar
  2. Bharti, K. K., & Singh, P. K. (2014a). Chaotic artificial bee colony for text clustering. In 2014 Fourth International Conference of Emerging Applications of Information Technology (EAIT) (pp. 337–343).Google Scholar
  3. Bharti, K. K., & Singh, P. K. (2014b). A three-stage unsupervised dimension reduction method for text clustering. Journal of Computational Science, 5(2), 156–169.CrossRefGoogle Scholar
  4. Bharti, K. K., & Singh, P. K. (2015a). Chaotic gradient artificial bee colony for text clustering. Soft Computing, 1–14.Google Scholar
  5. Bharti, K. K., & Singh, P. K. (2015b). Hybrid dimension reduction by integrating feature selection with feature extraction method for text clustering. Expert Systems with Applications, 42(6), 3105–3114.CrossRefGoogle Scholar
  6. Bharti, K. K., & Singh, P. K. (2016a). Chaotic gradient artificial bee colony for text clustering. Soft Computing, 20(3), 1113–1126.CrossRefGoogle Scholar
  7. Bharti, K. K., & Singh, P. K. (2016b). Opposition chaotic fitness mutation based adaptive inertia weight bpso for feature selection in text clustering. Applied Soft Computing.Google Scholar
  8. Bolaji, A. L., Al-Betar, M. A., Awadallah, M. A., Khader, A. T., & Abualigah, L. M. (2016). A comprehensive review: Krill herd algorithm (kh) and its applications. Applied Soft Computing.Google Scholar
  9. Cui, X., Potok, T. E., & Palathingal, P. (2005). Document clustering using particle swarm optimization. In Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS (pp. 185–191).Google Scholar
  10. Forsati, R., Mahdavi, M., Kangavari, M., & Safarkhani, B. (2008). Web page clustering using harmony search optimization. In 2008 Canadian Conference on Electrical and Computer Engineering, CCECE 2008 (pp. 001601–001604).Google Scholar
  11. Forsati, R., Mahdavi, M., Shamsfard, M., & Meybodi, M. R. (2013). Efficient stochastic algorithms for document clustering. Information Sciences, 220, 269–291.MathSciNetCrossRefGoogle Scholar
  12. Forsati, R., Keikha, A., & Shamsfard, M. (2015). An improved bee colony optimization algorithm with an application to document clustering. Neurocomputing, 159, 9–26.CrossRefGoogle Scholar
  13. Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: a new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831–4845.MathSciNetCrossRefGoogle Scholar
  14. Guo, W., & Gao, Y.-L. (2016). A study on the parameters of krill herd algorithm. In 2016 Chinese Control and Decision Conference (ccdc) (pp. 758–762).Google Scholar
  15. Jajoo, P. (2008). Document clustering. Unpublished doctoral dissertation. Institute of Technology Kharagpur, Indian.Google Scholar
  16. Karol, S., & Mangat, V. (2013). Evaluation of text document clustering approach based on particle swarm optimization. Open Computer Science, 3(2), 69–90.CrossRefGoogle Scholar
  17. Mahdavi, M., & Abolhassani, H. (2009). Harmony k-means algorithm for document clustering. Data Mining and Knowledge Discovery, 18(3), 370–391.MathSciNetCrossRefGoogle Scholar
  18. Mahdavi, M., Chehreghani, M. H., Abolhassani, H., & Forsati, R. (2008). Novel meta-heuristic algorithms for clustering web documents. Applied Mathematics and Computation, 201(1), 441–451.MathSciNetCrossRefGoogle Scholar
  19. Mohammed, A. J., Yusof, Y., & Husni, H. (2015). Document clustering based on firefly algorithm. Journal of Computer Science, 11(3), 453.CrossRefGoogle Scholar
  20. Mohammed, A. J., Yusof, Y., & Husni, H. (2016). Gf-clust: A nature-inspired algorithm for automatic text clustering. Journal of Information & Communication Technology, 15(1).Google Scholar
  21. Nayak, J., Naik, B., Behera, H. S., & Abraham, A. (2017). Hybrid chemical reaction based metaheuristic with fuzzy c-means algorithm for optimal cluster analysis. Expert Systems with Applications, 79, 282–295.CrossRefGoogle Scholar
  22. Prakash, B., Hanumanthappa, M., & Mamatha, M. (2014). In Cluster Based Term Weighting Model for Web Document Clustering (pp. 815–822).Google Scholar
  23. Rose, J. D. (2016). An efficient association rule based hierarchical algorithm for text clustering. International Journal of Advanced Engineering Technology, VII(1), 751–753.Google Scholar
  24. Sedding, J., & Kazakov, D. (2004). In Robust Methods in Analysis of Natural Language Data (pp. 104–113).Google Scholar
  25. Singh, V. K., Tiwari, N., & Garg, S. (2011). Document clustering using k-means, heuristic k-means and fuzzy c-means. In Computational Intelligence and Communication Networks (pp. 297–301).Google Scholar
  26. Steinbach, M., Karypis, G., Kumar, V., et al. (2000). A comparison of document clustering techniques. In Kdd workshop on text mining (Vol. 400, 525–526).Google Scholar
  27. Zaw, M. M., & Mon, E. E. (2013). Web document clustering using cuckoo search clustering algorithm based on levy flight. International Journal of Innovation and Applied Studies, 4(1), 182–188.Google Scholar
  28. Zaw, M. M., & Mon, E. E. (2015). Web document clustering by using pso-based cuckoo search clustering algorithm. In Recent Advances in Swarm Intelligence and Evolutionary Computation (pp. 263–281). Berlin: Springer.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universiti Sains MalaysiaPenangMalaysia

Personalised recommendations