Advertisement

Introduction

  • Laith Mohammad Qasim AbualigahEmail author
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 816)

Abstract

With the growth of the amount of text information on Internet web pages and modern applications, in general, interest in the text analysis area has increased to facilitate the processing of a large amount of unorganized text information (Sadeghian, Nezamabadi-pour, International symposium on artificial intelligence and signal processing (AISP), pp 240–245, (2015)).

References

  1. Abualigah, L. M., Khader, A. T., & Al-Betar, M. A. (2016a). Multi-objectives-based text clustering technique using k-mean algorithm. In 7th International Conference on Computer Science and Information Technology (CSIT) (pp. 1–6).  https://doi.org/10.1109/CSIT.2016.7549464.
  2. Abualigah, L. M., Khader, A. T., & Al-Betar, M. A. (2016b). Unsupervised feature selection technique based on genetic algorithm for improving the text clustering. In 7th International Conference on Computer Science and Information Technology (CSIT) (pp. 1–6).  https://doi.org/10.1109/CSIT.2016.7549453.
  3. Ahmad, S. R., Abu Bakar, A., & Yaakub, M. R. (2015). Metaheuristic algorithms for feature selection in sentiment analysis. In Science and Information Conference (SAI) (pp. 222–226).Google Scholar
  4. Bharti, K. K., & Singh, P. K. (2014). A three-stage unsupervised dimension reduction method for text clustering. Journal of Computational Science, 5(2), 156–169.Google Scholar
  5. Bharti, K. K., & Singh, P. K. (2015a). Chaotic gradient artificial bee colony for text clustering. Soft Computing, 1–14.Google Scholar
  6. Bharti, K. K., & Singh, P. K. (2015b). Hybrid dimension reduction by integrating feature selection with feature extraction method for text clustering. Expert Systems with Applications, 42(6), 3105–3114.Google Scholar
  7. Bharti, K. K., & Singh, P. K. (2016a). Chaotic gradient artificial bee colony for text clustering. Soft Computing, 20(3), 1113–1126.Google Scholar
  8. Bharti, K. K., & Singh, P. K. (2016b). Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering. Applied Soft Computing, 43(C), 20–34.Google Scholar
  9. Binu, D. (2015). Cluster analysis using optimization algorithms with newly designed objective functions. Expert Systems with Applications, 42(14), 5848–5859.Google Scholar
  10. BoussaïD, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics. Information Sciences, 237, 82–117.MathSciNetzbMATHGoogle Scholar
  11. Cobos, C., León, E., & Mendoza, M. (2010). A harmony search algorithm for clustering with feature selection. Revista Facultad de Ingeniería Universidad de Antioquia, (55), 153–164.Google Scholar
  12. Cobos, C., Muñoz-Collazos, H., Urbano-Muñoz, R., Mendoza, M., León, E., & Herrera-Viedma, E. (2014). Clustering of web search results based on the cuckoo search algorithm and balanced Bayesian information criterion. Information Sciences, 281, 248–264.Google Scholar
  13. Diao, R. (2014). Feature selection with harmony search and its applications (Unpublished doctoral dissertation), Aberystwyth University.Google Scholar
  14. Esmin, A. A., Coelho, R. A., & Matwin, S. (2015). A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artificial Intelligence Review, 44(1), 23–45.Google Scholar
  15. Forsati, R., Keikha, A., & Shamsfard, M. (2015). An improved bee colony optimization algorithm with an application to document clustering. Neurocomputing, 159, 9–26.Google Scholar
  16. Forsati, R., Mahdavi, M., Shamsfard, M., & Meybodi, M. R. (2013). Efficient stochastic algorithms for document clustering. Information Sciences, 220, 269–291.MathSciNetGoogle Scholar
  17. George, G., & Parthiban, L. (2015). Multi objective hybridized firefly algorithm with group search optimization for data clustering. In 2015 IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN) (pp. 125–130).Google Scholar
  18. Guo, Y., Li, Y., & Shao, Z. (2015). An ant colony-based text clustering system with cognitive situation dimensions. International Journal of Computational Intelligence Systems, 8(1), 138–157.Google Scholar
  19. Lin, K.-C., Zhang, K.-Y., Huang, Y.-H., Hung, J. C., & Yen, N. (2016). Feature selection based on an improved cat swarm optimization algorithm for big data classification. The Journal of Supercomputing, 1–12.Google Scholar
  20. Lu, Y., Liang, M., Ye, Z., & Cao, L. (2015). Improved particle swarm optimization algorithm and its application in text feature selection. Applied Soft Computing, 35, 629–636.Google Scholar
  21. Moayedikia, A., Jensen, R., Wiil, U. K., & Forsati, R. (2015). Weighted bee colony algorithm for discrete optimization problems with application to feature selection. Engineering Applications of Artificial Intelligence, 44, 153–167.Google Scholar
  22. Mohammed, A. J., Yusof, Y., & Husni, H. (2015). Document clustering based on firefly algorithm. Journal of Computer Science, 11(3), 453.Google Scholar
  23. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., & Coello, C. A. C. (2014). Survey of multiobjective evolutionary algorithms for data mining: Part ii. IEEE Transactions on Evolutionary Computation, 18(1), 20–35.Google Scholar
  24. Mukhopadhyay, A., Maulik, U., & Bandyopadhyay, S. (2015). A survey of multiobjective evolutionary clustering. ACM Computing Surveys (CSUR), 47(4), 61.Google Scholar
  25. Nebu, C. M., & Joseph, S. (2016). A hybrid dimension reduction technique for document clustering. In Innovations in Bio-inspired Computing and Applications (pp. 403–416). Berlin: Springer.Google Scholar
  26. Oikonomakou, N., & Vazirgiannis, M. (2010). A review of web document clustering approaches. In Data Mining and Knowledge Discovery Handbook (pp. 931–948). Berlin: Springer.Google Scholar
  27. Prakash, B., Hanumanthappa, M., & Mamatha, M. (2014). Cluster based term weighting model for web document clustering. In Proceedings of the Third International Conference on Soft Computing for Problem Solving (pp. 815–822).Google Scholar
  28. Rao, A. S., Ramakrishna, S., & Babu, P. C. (2016). MODC: Multi-objective distance based optimal document clustering by GA. Indian Journal of Science and Technology, 9(28).Google Scholar
  29. Raymer, M. L., Punch, W. F., Goodman, E. D., Kuhn, L. A., & Jain, A. K. (2000). Dimensionality reduction using genetic algorithms. IEEE Transactions on Evolutionary Computation, 4(2), 164–171.Google Scholar
  30. Sadeghian, A. H., & Nezamabadi-pour, H. (2015). Document clustering using gravitational ensemble clustering. In 2015 International Symposium on Artificial Intelligence and Signal Processing (AISP) (pp. 240–245).Google Scholar
  31. Saha, S., Ekbal, A., Alok, A. K., & Spandana, R. (2014). Feature selection and semisupervised clustering using multiobjective optimization. SpringerPlus, 3(1), 465.Google Scholar
  32. Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613–620.zbMATHGoogle Scholar
  33. Sorzano, C. O. S., Vargas, J., & Montano, A. P. (2014). A survey of dimensionality reduction techniques. arXiv:1403.2877.
  34. Tang, B., Shepherd, M., Milios, E., & Heywood, M. I. (2005). Comparing and combining dimension reduction techniques for efficient text clustering. In Proceeding of SIAM International Workshop on Feature Selection for Data Mining (pp. 17–26).Google Scholar
  35. Uğuz, H. (2011). A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm. Knowledge- Based Systems, 24(7), 1024–1032.Google Scholar
  36. van der MLJP, P. E., & van den HH, J. (2009). Dimensionality reduction: A comparative review (Technical Report). Tilburg, Netherlands: Tilburg Centre for Creative Computing, Tilburg University, Technical Report: 2009-005.Google Scholar
  37. Wang, G.-G., Gandomi, A. H., Alavi, A. H., & Deb, S. (2015a). A hybrid method based on krill herd and quantum-behaved particle swarm optimization. Neural Computing and Applications, 1–18.Google Scholar
  38. Wang, Y., Liu, Y., Feng, L., & Zhu, X. (2015b). Novel feature selection method based on harmony search for email classification. Knowledge-Based Systems, 73, 311–323.Google Scholar
  39. Wang, J., Yuan, W., & Cheng, D. (2015c). Hybrid genetic-particle swarm algorithm: an efficient method for fast optimization of atomic clusters. Computational and Theoretical Chemistry, 1059, 12–17.Google Scholar
  40. Wolpert, D. H. (2013). Ubiquity symposium: Evolutionary computation and the processes of life: What the no free lunch theorems really mean: How to improve search algorithms. Ubiquity, 2013(December), 2.Google Scholar
  41. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.Google Scholar
  42. Yao, F., Coquery, J., & Lê Cao, K.-A. (2012a). Independent principal component analysis for biologically meaningful dimension reduction of large biological data sets. BMC Bioinformatics, 13(1), 1.Google Scholar
  43. Yuan, M., Ouyang, Y. X., & Xiong, Z. (2013). A text categorization method using extended vector space model by frequent term sets. Journal of Information Science and Engineering, 29(1), 99–114.Google Scholar
  44. Zheng, L., Diao, R., & Shen, Q. (2015). Self-adjusting harmony search-based feature selection. Soft Computing, 19(6), 1567–1579.Google Scholar
  45. Zheng, Z., Wu, X., & Srihari, R. (2004). Feature selection for text categorization on imbalanced data. ACM Sigkdd Explorations Newsletter, 6(1), 80–89.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universiti Sains MalaysiaPenangMalaysia

Personalised recommendations