Advertisement

Challenges of Synthesis and Environmental Applications of Metal-Free Nano-heterojunctions

  • Vagner R. de MendonçaEmail author
  • Osmando F. Lopes
  • André E. Nogueira
  • Gelson T. S. T. da Silva
  • Caue Ribeiro
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 29)

Abstract

The rapid and unceasing population growth, concomitant with the need for economic development, has led to numerous environmental problems. The most remarkable problems are the release of pesticides in ground water or carbon dioxide in the atmosphere. In this context, nanomaterials are becoming increasingly vital for environmental protection due to their versatile compositions and means of application.

It is well established that most of research devoted to environmental applications of heterostructures, materials made up of semiconductors that share a common interface, have addressed the degradation of organic contaminants in water. However, there are several emerging uses of heterostructures, for example, in gaseous systems as chemical reaction promoters and gas sensors.

Since the properties presented by nanomaterials are strictly related to the morphology of the solid, the development of controllable and reproducible synthesis methods are one of the major focus of research in materials science. Currently, there is intense research towards synthesis methods able to produce heterostructures with controlled morphology and structural/surface properties useful for environmental applications.

In this chapter, we discuss innovative approaches for synthesis of heterostructures, giving examples of several different systems, and applications beyond degradation of contaminants in water via heterogeneous photocatalysis, such as photoreduction/oxidation of metallic ions and gas-phase reactions, showing the versatility of such materials.

Keywords

Photocatalysis Photodegradation Photoreduction Nanomaterials Environmental Wastewater treatment Carbon dioxide photoreduction Heavy metal abatement Heterostructures Semiconductors 

References

  1. Ai Z, Lee S (2013) Morphology-dependent photocatalytic removal of NO by hierarchical BiVO4 microboats and microspheres under visible light. Appl Surf Sci 280:354–359.  https://doi.org/10.1016/J.APSUSC.2013.04.160 CrossRefGoogle Scholar
  2. Alves de Castro I, Ariane de Oliveira J, Cristina Paris E, Regina Giraldi T, Ribeiro C (2015) Production of heterostructured TiO2/WO3 nanoparticulated photocatalysts through a simple one pot method. Ceram Int 41:3502–3510.  https://doi.org/10.1016/j.ceramint.2014.11.001 CrossRefGoogle Scholar
  3. Anderson RA (1997) Chromium as an essential nutrient for humans. Regul Toxicol Pharmacol 26:35–41.  https://doi.org/10.1006/rtph.1997.1136 CrossRefGoogle Scholar
  4. Andreozzi R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59.  https://doi.org/10.1016/S0920-5861(99)00102-9 CrossRefGoogle Scholar
  5. Balogun MS, Huang Y, Qiu W, Yang H, Ji H, Tong Y (2017) Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater Today 20:425–451.  https://doi.org/10.1016/j.mattod.2017.03.019 CrossRefGoogle Scholar
  6. Cao S, Yu J (2016) Carbon-based H2-production photocatalytic materials. J Photochem Photobiol C: Photochem Rev 27:72–99.  https://doi.org/10.1016/j.jphotochemrev.2016.04.002 CrossRefGoogle Scholar
  7. Carvalho KTG, Nogueira AE, Lopes OF, Byzynski G, Ribeiro C (2016) Synthesis of g-C3N4/Nb2O5 heterostructures and their application on removal of organic pollutants under visible and ultraviolet irradiation. Ceram Int.  https://doi.org/10.1016/j.ceramint.2016.11.063
  8. Chandrasekharan N, Kamat PV (2000) Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J Phys Chem B 104:10851–10857.  https://doi.org/10.1021/jp0010029 CrossRefGoogle Scholar
  9. Chang X, Wang T, Gong J (2016) CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ Sci 9:2177–2196.  https://doi.org/10.1039/C6EE00383D CrossRefGoogle Scholar
  10. Chang C-J, Weng H-T, Chang C-C (2017) CuSZnS1−xOx/g-C3N4 heterostructured photocatalysts for efficient photocatalytic hydrogen production. Int J Hydrog Energy 42:23568–23577.  https://doi.org/10.1016/j.ijhydene.2017.01.047 CrossRefGoogle Scholar
  11. Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol C: Photochem Rev 6:186–205.  https://doi.org/10.1016/j.jphotochemrev.2005.09.001 CrossRefGoogle Scholar
  12. Chen C, Ma W, Zhao J (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39:4206.  https://doi.org/10.1039/b921692h CrossRefGoogle Scholar
  13. Chen W, Ruan H, Hu Y, Li D, Chen Z, Xian J, Chen J, Fu X, Shao Y, Zheng Y (2012) One-step preparation of hollow ZnO core/ZnS shell structures with enhanced photocatalytic properties. CrystEngComm 14:6295.  https://doi.org/10.1039/c2ce25591j CrossRefGoogle Scholar
  14. Chen S, Thind SS, Chen A (2016) Nanostructured materials for water splitting – state of the art and future needs: a mini-review. Electrochem Commun 63:10–17.  https://doi.org/10.1016/j.elecom.2015.12.003 CrossRefGoogle Scholar
  15. Choudhury B, Giri PK (2016) Isotype heterostructure of bulk and nanosheets of graphitic carbon nitride for efficient visible light photodegradation of methylene blue. RSC Adv 6:24976–24984.  https://doi.org/10.1039/C6RA00933F CrossRefGoogle Scholar
  16. Christopher K, Dimitrios R (2012) A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy Environ Sci 5:6640.  https://doi.org/10.1039/c2ee01098d CrossRefGoogle Scholar
  17. Chung K-H, Jeong S, Kim B-J, Kim J-S, Park Y-K, Jung S-C (2017) Development of hydrogen production by liquid phase plasma process of water with NiTiO2/carbon nanotube photocatalysts. Int J Hydrog Energy 1–8. doi: https://doi.org/10.1016/j.ijhydene.2017.09.065.
  18. D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49:6058–6082.  https://doi.org/10.1002/anie.201000431 CrossRefGoogle Scholar
  19. Da Silva RO, Gonçalves RH, Stroppa DG, Ramirez AJ, Leite ER (2011) Synthesis of recrystallized anatase TiO2 mesocrystals with Wulff shape assisted by oriented attachment. Nanoscale 3:1910.  https://doi.org/10.1039/c0nr01016b CrossRefGoogle Scholar
  20. da Silva GTST, Carvalho KTG, Lopes OF, Ribeiro C (2017) g-C3N4/Nb2O5 heterostructures tailored by sonochemical synthesis: enhanced photocatalytic performance in oxidation of emerging pollutants driven by visible radiation. Appl Catal B Environ 216:70–79.  https://doi.org/10.1016/j.apcatb.2017.05.038 CrossRefGoogle Scholar
  21. Dalmaschio CJ, Ribeiro C, Leite ER (2010) Impact of the colloidal state on the oriented attachment growth mechanism. Nanoscale 2:2336–2345.  https://doi.org/10.1039/c0nr00338g CrossRefGoogle Scholar
  22. de Castro IA, Avansi W, Ribeiro C (2014) WO3/TiO2 heterostructures tailored by the oriented attachment mechanism: insights from their photocatalytic properties. CrystEngComm 16:1514.  https://doi.org/10.1039/c3ce41668b CrossRefGoogle Scholar
  23. De Mendonça VR, Ribeiro C (2011) Influence of TiO2 morphological parameters in dye photodegradation: a comparative study in peroxo-based synthesis. Appl Catal B Environ 105:298–305.  https://doi.org/10.1016/j.apcatb.2011.04.018 CrossRefGoogle Scholar
  24. De Mendonça VR, Lopes OF, Fregonesi RP, Giraldi TR, Ribeiro C (2014) TiO2-SnO2 heterostructures applied to dye photodegradation: the relationship between variables of synthesis and photocatalytic performance. Appl Surf Sci 298:182–191.  https://doi.org/10.1016/j.apsusc.2014.01.157 CrossRefGoogle Scholar
  25. de Mendonça VR, Dalmaschio CJ, Leite ER, Niederberger M, Ribeiro C (2015) Heterostructure formation from hydrothermal annealing of preformed nanocrystals. J Mater Chem A 3:2216–2225.  https://doi.org/10.1039/C4TA05926C CrossRefGoogle Scholar
  26. de Mendonça VR, Avansi W, Arenal R, Ribeiro C (2017) A building blocks strategy for preparing photocatalytically active anatase TiO2/rutile SnO2 heterostructures by hydrothermal annealing. J Colloid Interface Sci 505:454–459.  https://doi.org/10.1016/J.JCIS.2017.06.024 CrossRefGoogle Scholar
  27. De Oliveira Melo M, Silva LA (2011) Photocatalytic production of hydrogen: an innovative use for biomass derivatives. J Braz Chem Soc 22:1399–1406.  https://doi.org/10.1590/S0103-50532011000800002. CrossRefGoogle Scholar
  28. Djellabi R, Ghorab FM, Nouacer S, Smara A, Khireddine O (2016) Cr(VI) photocatalytic reduction under sunlight followed by Cr(III) extraction from TiO2surface. Mater Lett 176:106–109.  https://doi.org/10.1016/j.matlet.2016.04.090 CrossRefGoogle Scholar
  29. Dong G, Zhang L (2013) Synthesis and enhanced Cr(VI) photoreduction property of formate anion containing graphitic carbon nitride. J Phys Chem C 117:4062–4068.  https://doi.org/10.1021/jp3115226 CrossRefGoogle Scholar
  30. Fan Y, Han D, Song Z, Sun Z, Dong X, Niu L (2017) Regulations of silver halide nanostructure and composites on photocatalysis. Adv Compos Hybrid Mater.  https://doi.org/10.1007/s42114-017-0005-2
  31. Fang Z, Liu Y, Fan Y, Ni Y, Wei X, Tang K, Shen J, Chen Y (2011) Epitaxial growth of CdS nanoparticle on Bi2S3 nanowire and photocatalytic application of the heterostructure. J Phys Chem C 115:13968–13976.  https://doi.org/10.1021/jp112259p CrossRefGoogle Scholar
  32. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38.  https://doi.org/10.1038/238037a0 CrossRefGoogle Scholar
  33. Gao Y, Liu R (2017) Removal of Cr(VI) from groundwater by Fe(0). Appl Water Sci 7:3625–3631.  https://doi.org/10.1007/s13201-016-0506-0 CrossRefGoogle Scholar
  34. Gao Y, Zhu J, An H, Yan P, Huang B, Chen R, Fan F, Li C (2017) Directly probing charge separation at interface of TiO2 phase junction. J Phys Chem Lett 8:1419–1423.  https://doi.org/10.1021/acs.jpclett.7b00285 CrossRefGoogle Scholar
  35. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C: Photochem Rev 9:1–12.  https://doi.org/10.1016/j.jphotochemrev.2007.12.003. CrossRefGoogle Scholar
  36. Goesmann H, Feldmann C (2010) Nanoparticulate functional materials. Angew Chem Int Ed 49:1362–1395.  https://doi.org/10.1002/anie.200903053 CrossRefGoogle Scholar
  37. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344.  https://doi.org/10.1038/35104607 CrossRefGoogle Scholar
  38. Guan X, Du J, Meng X, Sun Y, Sun B, Hu Q (2012) Application of titanium dioxide in arsenic removal from water: a review. J Hazard Mater 215–216:1–16.  https://doi.org/10.1016/j.jhazmat.2012.02.069 CrossRefGoogle Scholar
  39. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52:7372–7408.  https://doi.org/10.1002/anie.201207199 CrossRefGoogle Scholar
  40. Han S, Chen Y, Abanades S, Zhang Z (2017) Improving photoreduction of CO2 with water to CH4 in a novel concentrated solar reactor. J Energy Chem 26:743–749.  https://doi.org/10.1016/j.jechem.2017.03.006 CrossRefGoogle Scholar
  41. Heiligtag FJ, Cheng W, De Mendonça VR, Süess MJ, Hametner K, Günther D, Ribeiro C, Niederberger M (2014) Self-assembly of metal and metal oxide nanoparticles and nanowires into a macroscopic ternary aerogel monolith with tailored photocatalytic properties. Chem Mater 26:5576–5584.  https://doi.org/10.1021/cm502063f. CrossRefGoogle Scholar
  42. Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 66:185–297.  https://doi.org/10.1016/j.surfrep.2011.01.001 CrossRefGoogle Scholar
  43. Hu X, Song G, Li W, Peng Y, Jiang L, Xue Y, Liu Q, Chen Z, Hu J (2013) Phase-controlled synthesis and photocatalytic properties of SnS, SnS2 and SnS/SnS2 heterostructure nanocrystals. Mater Res Bull 48:2325–2332.  https://doi.org/10.1016/J.MATERRESBULL.2013.02.082 CrossRefGoogle Scholar
  44. Huang F, Zhang H, Banfield JF (2003) The role of oriented attachment crystal growth in hydrothermal coarsening of nanocrystalline ZnS. J Phys Chem B 107:10470–10475.  https://doi.org/10.1021/JP035518E CrossRefGoogle Scholar
  45. Huang H, Xiao K, Du X, Zhang Y (2017) Vertically aligned nanosheets-array-like BiOI homojunction: three-in-one promoting photocatalytic oxidation and reduction abilities. ACS Sustain Chem Eng 5:5253–5264.  https://doi.org/10.1021/acssuschemeng.7b00599 CrossRefGoogle Scholar
  46. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549.  https://doi.org/10.1021/jp0273934 CrossRefGoogle Scholar
  47. Jang JS, Kim HG, Lee JS (2012) Heterojunction semiconductors: a strategy to develop efficient photocatalytic materials for visible light water splitting. Catal Today 185:270–277.  https://doi.org/10.1016/j.cattod.2011.07.008 CrossRefGoogle Scholar
  48. Jia X, Cao J, Lin H, Zhang M, Guo X, Chen S (2017) Transforming type-I to type-II heterostructure photocatalyst via energy band engineering: a case study of I-BiOCl/I-BiOBr. Appl Catal B Environ 204:505–514.  https://doi.org/10.1016/j.apcatb.2016.11.061 CrossRefGoogle Scholar
  49. Jiang D, Li J, Xing C, Zhang Z, Meng S, Chen M (2015) Two-dimensional CaIn2S4/g-C3N4 heterojunction nanocomposite with enhanced visible-light photocatalytic activities: interfacial engineering and mechanism insight. ACS Appl Mater Interfaces 7:19234–19242.  https://doi.org/10.1021/acsami.5b05118 CrossRefGoogle Scholar
  50. Jiang D, Ma W, Xiao P, Shao L, Li D, Chen M (2018) Enhanced photocatalytic activity of graphitic carbon nitride/carbon nanotube/Bi2WO6 ternary Z-scheme heterojunction with carbon nanotube as efficient electron mediator. J Colloid Interface Sci 512:693–700.  https://doi.org/10.1016/j.jcis.2017.10.074 CrossRefGoogle Scholar
  51. Karunakaran C, Vinayagamoorthy P, Jayabharathi J (2014) Nonquenching of charge carriers by Fe3O4 core in Fe3O4/ZnO nanosheet photocatalyst. Langmuir 30:15031–15039.  https://doi.org/10.1021/la5039409 CrossRefGoogle Scholar
  52. Ke W, Cui T, Yu Q, Wang M, Lv L, Wang H, Jiang Z, Li X, Chen J (2017) Mesoporous H-ZSM-5 nanocrystals with programmable number of acid sites as “solid ligands” to activate Pd nanoparticles for C–C coupling reactions. Nano Res 1–8. doi: https://doi.org/10.1007/s12274-017-1698-9.
  53. Kudo A (2003) Photocatalyst materials for water splitting. Surv. from Asia. 7 31–38. doi: https://doi.org/10.1023/A:1023480507710.
  54. Lashgari M, Soodi S, Zeinalkhani P (2017) Photocatalytic back-conversion of CO2 into oxygenate fuels using an efficient ZnO/CuO/carbon nanotube solar-energy-material: artificial photosynthesis. J CO2 Utilization 18:89–97.  https://doi.org/10.1016/j.jcou.2017.01.017 CrossRefGoogle Scholar
  55. Lee EJH, Ribeiro C, Elson Longo A, Leite ER (2005) Oriented attachment: an effective mechanism in the formation of anisotropic nanocrystals. J Phys Chem B 109:20842–20846.  https://doi.org/10.1021/JP0532115 CrossRefGoogle Scholar
  56. Leite ER, Ribeiro C (2012) Crystallization and growth of colloidal nanocrystals. Springer, New York.  https://doi.org/10.1007/978-1-4614-1308-0 CrossRefGoogle Scholar
  57. Li R, Zhang F, Wang D, Yang J, Li M, Zhu J, Zhou X, Han H, Li C (2013) Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat Commun 4:1432–1437.  https://doi.org/10.1038/ncomms2401 CrossRefGoogle Scholar
  58. Li Q, Zhang N, Yang Y, Wang G, Ng DHL (2014) High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures. Langmuir 30:8965–8972.  https://doi.org/10.1021/la502033t CrossRefGoogle Scholar
  59. Li P, Zhou Y, Zhao Z, Xu Q, Wang X, Xiao M, Zou Z (2015) Hexahedron prism-anchored octahedronal CeO2: crystal facet-based homojunction promoting efficient solar fuel synthesis. J Am Chem Soc 137:9547–9550.  https://doi.org/10.1021/jacs.5b05926 CrossRefGoogle Scholar
  60. Li X, Yu J, Jaroniec M (2016a) Hierarchical photocatalysts. Chem Soc Rev 45:2603–2636.  https://doi.org/10.1039/C5CS00838G CrossRefGoogle Scholar
  61. Li X, Yu J, Wageh S, Al-Ghamdi AA, Xie J (2016b) Graphene in photocatalysis: a review. Small 12:6640–6696.  https://doi.org/10.1002/smll.201600382 CrossRefGoogle Scholar
  62. Li K, Peng B, Peng T (2016c) Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal 6:7485–7527.  https://doi.org/10.1021/acscatal.6b02089 CrossRefGoogle Scholar
  63. Li W, Lin Z, Yang G (2017) A 2D self-assembled MoS2/ZnIn2S4 heterostructure for efficient photocatalytic hydrogen evolution. Nanoscale.  https://doi.org/10.1039/C7NR06755K
  64. Li Y, Liu Z, Wu Y, Chen J, Zhao J, Jin F, Na P (2018) Carbon dots-TiO2nanosheets composites for photoreduction of Cr(VI) under sunlight illumination: favorable role of carbon dots. Appl Catal B Environ 224:508–517.  https://doi.org/10.1016/j.apcatb.2017.10.023 CrossRefGoogle Scholar
  65. Libanori R, da Silva RO, Ribeiro C, Ari-Gur P, Leite ER (2012) Improved photocatalytic activity of anisotropic rutile/anatase TiO2 nanoparticles synthesized by the Ti-peroxo complex method. J Nanosci Nanotechnol 12:4678–4684.  https://doi.org/10.1166/jnn.2012.6165 CrossRefGoogle Scholar
  66. Lim CH, Holder AM, Hynes JT, Musgrave CB (2015) Catalytic reduction of CO2 by renewable organohydrides. J Phys Chem Lett 6:5078–5092.  https://doi.org/10.1021/acs.jpclett.5b01827 CrossRefGoogle Scholar
  67. Lingampalli SR, Ayyub MM, Rao CNR (2017) Recent progress in the photocatalytic reduction of carbon dioxide. ACS Omega 2:2740–2748.  https://doi.org/10.1021/acsomega.7b00721 CrossRefGoogle Scholar
  68. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758.  https://doi.org/10.1021/cr00035a013 CrossRefGoogle Scholar
  69. Liu Z, Sun DD, Guo P, Leckie JO (2007) An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett 7:1081–1085.  https://doi.org/10.1021/nl061898e CrossRefGoogle Scholar
  70. Liu L, Qi Y, Lu J, Lin S, An W, Liang Y, Cui W (2016a) A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation. Appl Catal B Environ 183:133–141.  https://doi.org/10.1016/j.apcatb.2015.10.035 CrossRefGoogle Scholar
  71. Liu X, Chen N, Li Y, Deng D, Xing X, Wang Y (2016b) A general nonaqueous sol-gel route to g-C3N4-coupling photocatalysts: the case of Z-scheme g-C3N4/TiO2 with enhanced photodegradation toward RhB under visible-light. Sci Rep 6:1–16.  https://doi.org/10.1038/srep39531 CrossRefGoogle Scholar
  72. Liu Y, Ren F, Shen S, Chen J, Fu Y, Cai G, Wang X, Xing Z, Wu L, Zheng X, Jiang C (2017) Vacancy-doped homojunction structural TiO2 nanorod photoelectrodes with greatly enhanced photoelectrochemical activity. Int J Hydrog Energy 43:2057–2063.  https://doi.org/10.1016/j.ijhydene.2017.11.133. CrossRefGoogle Scholar
  73. Lopes OF, Paris EC, Ribeiro C (2014) Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: a mechanistic study. Appl Catal B Environ 144:800–808CrossRefGoogle Scholar
  74. Lopes OF, Carvalho KTG, Nogueira AE, Avansi W, Ribeiro C (2016) Controlled synthesis of BiVO4 photocatalysts: evidence of the role of heterojunctions in their catalytic performance driven by visible-light. Appl Catal B Environ 188:87–97.  https://doi.org/10.1016/j.apcatb.2016.01.065 CrossRefGoogle Scholar
  75. Lopes OF, Carvalho KTG, Avansi W, Ribeiro C (2017) Growth of BiVO4 nanoparticles on a Bi2O3 surface: effect of heterojunction formation on visible irradiation-driven catalytic performance. J Phys Chem C 121:13747–13756.  https://doi.org/10.1021/acs.jpcc.7b03340 CrossRefGoogle Scholar
  76. Lv J, Li D, Dai K, Liang C, Jiang D, Lu L, Zhu G (2017) Multi-walled carbon nanotube supported CdS-DETA nanocomposite for efficient visible light photocatalysis. Mater Chem Phys 186:372–381.  https://doi.org/10.1016/j.matchemphys.2016.11.008 CrossRefGoogle Scholar
  77. MA SSK, Hisatomi T, Domen K (2013) Hydrogen production by photocatalytic water splitting. J Jpn Pet Inst 56:280–287CrossRefGoogle Scholar
  78. Ma Y, Wang X, Jia Y, Chen X, Han H, Li C (2014) Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev 114:9987–10043.  https://doi.org/10.1021/cr500008u CrossRefGoogle Scholar
  79. Madhusudan P, Zhang J, Cheng B, Liu G (2013) Photocatalytic degradation of organic dyes with hierarchical Bi2O2CO3 microstructures under visible-light. CrystEngComm 15:231–240.  https://doi.org/10.1039/C2CE26639C CrossRefGoogle Scholar
  80. Maeda K (2011) Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photochem Photobiol C: Photochem Rev 12:237–268.  https://doi.org/10.1016/j.jphotochemrev.2011.07.001 CrossRefGoogle Scholar
  81. Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1:2655–2661.  https://doi.org/10.1021/jz1007966 CrossRefGoogle Scholar
  82. Mao Z, Chen J, Yang Y, Wang D, Bie L, Fahlman BD (2017) Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution. ACS Appl Mater Interfaces 9:12427–12435.  https://doi.org/10.1021/acsami.7b00370 CrossRefGoogle Scholar
  83. Markham SC (1955) Photocatalytic properties of oxides. J Chem Educ 32:540.  https://doi.org/10.1021/ed032p540 CrossRefGoogle Scholar
  84. Mokari T, Sztrum CG, Salant A, Rabani E, Banin U (2005) Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat Mater 4:855–863.  https://doi.org/10.1038/nmat1505 CrossRefGoogle Scholar
  85. Mondal B, Song J, Neese F, Ye S (2015) Bio-inspired mechanistic insights into CO2 reduction. Curr Opin Chem Biol 25:103–109.  https://doi.org/10.1016/j.cbpa.2014.12.022 CrossRefGoogle Scholar
  86. Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42:1983–1994.  https://doi.org/10.1021/ar9001679 CrossRefGoogle Scholar
  87. Mourão HAJL, Junior WA, Ribeiro C (2012) Hydrothermal synthesis of Ti oxide nanostructures and TiO2:SnO2 heterostructures applied to the photodegradation of rhodamine B. Mater Chem Phys 135:524–532.  https://doi.org/10.1016/j.matchemphys.2012.05.019 CrossRefGoogle Scholar
  88. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C: Photochem Rev 13:169–189.  https://doi.org/10.1016/j.jphotochemrev.2012.06.001 CrossRefGoogle Scholar
  89. Nguyen V-H, Wu JCS (2018) Recent developments in the design of photoreactors for solar energy conversion from water splitting and CO2 reduction. Appl Catal A Gen 550:122–141.  https://doi.org/10.1016/j.apcata.2017.11.002 CrossRefGoogle Scholar
  90. Nikokavoura A, Trapalis C (2018) Graphene and g-C3N4 based photocatalysts for NOx removal: a review. Appl Surf Sci 430:18–52.  https://doi.org/10.1016/j.apsusc.2017.08.192 CrossRefGoogle Scholar
  91. Nogueira AE, Giroto AS, Neto ABS, Ribeiro C (2016) CuO synthesized by solvothermal method as a high capacity adsorbent for hexavalent chromium. Colloids Surf A Physicochem Eng Asp 498:161–167.  https://doi.org/10.1016/j.colsurfa.2016.03.022 CrossRefGoogle Scholar
  92. Nogueira AE, Lopes OF, Neto ABS, Ribeiro C (2017) Enhanced Cr(VI) photoreduction in aqueous solution using Nb2O5/CuO heterostructures under UV and visible irradiation. Chem Eng J 312:220–227.  https://doi.org/10.1016/j.cej.2016.11.135 CrossRefGoogle Scholar
  93. Obregón S, Caballero A, Colón G (2012) Hydrothermal synthesis of BiVO4: structural and morphological influence on the photocatalytic activity. Appl Catal B Environ 117–118:59–66.  https://doi.org/10.1016/j.apcatb.2011.12.037 CrossRefGoogle Scholar
  94. Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016.) acs.chemrev.6b00075) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev.  https://doi.org/10.1021/acs.chemrev.6b00075
  95. Park Y, McDonald KJ, Choi K-S (2013) Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev 42:2321–2337.  https://doi.org/10.1039/c2cs35260e CrossRefGoogle Scholar
  96. Pechini MP (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US3330697AGoogle Scholar
  97. Penn RL, Banfield JF (1998a) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281:969–971.  https://doi.org/10.1126/SCIENCE.281.5379.969. CrossRefGoogle Scholar
  98. Penn RL, Banfield JF (1998b) Oriented attachment and growth, twinning, polytypism, and formation of metastable phases; insights from nanocrystalline TiO2. Am Mineral 83:1077–1082.  https://doi.org/10.2138/am-1998-9-1016 CrossRefGoogle Scholar
  99. Polleux J, Pinna N, Antonietti M, Hess C, Wild U, Schlögl R, Niederberger M (2005) Ligand functionality as a versatile tool to control the assembly behavior of preformed titania nanocrystals. Chem Eur J 11:3541–3551.  https://doi.org/10.1002/chem.200401050 CrossRefGoogle Scholar
  100. Pradhan D, Sukla LB, Sawyer M, Rahman PKSM (2017) Recent bioreduction of hexavalent chromium in wastewater treatment: a review. J Ind Eng Chem 55:1–20.  https://doi.org/10.1016/j.jiec.2017.06.040 CrossRefGoogle Scholar
  101. Price GJ, Nawaz M, Yasin T, Bibi S (2016) Sonochemical modification of carbon nanotubes for enhanced nanocomposite performance. Ultrason Sonochem 40:123–130.  https://doi.org/10.1016/j.ultsonch.2017.02.021. CrossRefGoogle Scholar
  102. Ribeiro C, Lee EJH, Giraldi TR, Aguiar R, Longo E, Leite ER (2005) In situ oriented crystal growth in a ceramic nanostructured system. J Appl Phys 97:24313.  https://doi.org/10.1063/1.1829782 CrossRefGoogle Scholar
  103. Ribeiro C, Lee EJH, Longo E, Leite ER (2006) Oriented attachment mechanism in anisotropic nanocrystals: a “polymerization” approach. ChemPhysChem 7:664–670.  https://doi.org/10.1002/cphc.200500508 CrossRefGoogle Scholar
  104. Ribeiro C, Longo E, Leite ER (2007) Tailoring of heterostructures in a SnO2∕TiO2 system by the oriented attachment mechanism. Appl Phys Lett 91:103105.  https://doi.org/10.1063/1.2779932 CrossRefGoogle Scholar
  105. Ribeiro C, Barrado CM, de Camargo ER, Longo E, Leite ER (2009) Phase transformation in titania nanocrystals by the oriented attachment mechanism: the role of the pH value. Chem Eur J 15:2217–2222.  https://doi.org/10.1002/chem.200801019 CrossRefGoogle Scholar
  106. Sampaio MJ, Benyounes A, Serp P, Faria JL, Silva CG (2018) Photocatalytic synthesis of vanillin using N-doped carbon nanotubes/ZnO catalysts under UV-LED irradiation. Appl Catal A Gen 551:71–78.  https://doi.org/10.1016/j.apcata.2017.12.002 CrossRefGoogle Scholar
  107. Schultz DM, Yoon TP (2014) Solar synthesis: prospects in visible light photocatalysis. Science (80)343. doi: https://doi.org/10.1126/science.1239176.
  108. Serpone N, Emeline AV (2012) Semiconductor photocatalysis – past, present, and future outlook. J Phys Chem Lett 3:673–677.  https://doi.org/10.1021/jz300071j CrossRefGoogle Scholar
  109. Serpone N, Borgarello E, Grätzel M (1984) Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer. J Chem Soc Chem Commun 1984:342–344.  https://doi.org/10.1039/C39840000342 CrossRefGoogle Scholar
  110. Shafiee MAM, Jafari AA (2017) Co-precipitation synthesis of ZnO-TiO2 nanostructure composites for arsenic photodegradation from industrial wastewater. Int J Environ Sci Technol.  https://doi.org/10.1007/s13762-017-1585-7
  111. Shi Y, Chen Y, Tian G, Fu H, Pan K, Zhou J, Yan H (2014) One-pot controlled synthesis of sea-urchin shaped Bi2S3/CdS hierarchical heterostructures with excellent visible light photocatalytic activity. Dalton Trans 43:12396–12404.  https://doi.org/10.1039/c4dt01176g CrossRefGoogle Scholar
  112. Srinivasu K, Modak B, Ghosh SK (2014) Porous graphitic carbon nitride: a possible metal-free photocatalyst for water splitting. J Phys Chem C 118:26479–26484.  https://doi.org/10.1021/jp506538d CrossRefGoogle Scholar
  113. Stroppa DG, Montoro LA, Beltrán A, Conti TG, da Silva RO, Andrés J, Leite ER, Ramirez AJ (2011) Anomalous oriented attachment growth behavior on SnO2 nanocrystals. Chem Commun 47:3117.  https://doi.org/10.1039/c0cc04570e CrossRefGoogle Scholar
  114. Sun H, Zhou G, Wang Y, Suvorova A, Wang S (2014) A new metal-free carbon hybrid for enhanced photocatalysis. ACS Appl Mater Interfaces 6:16745–16754.  https://doi.org/10.1021/am503820h CrossRefGoogle Scholar
  115. Talapin DV, Yu H, Shevchenko EV, Lobo A, Murray CB (2007) Synthesis of colloidal PbSe/PbS core-shell nanowires and PbS/Au nanowire-nanocrystal heterostructures. J Phys Chem C 111:14049–14054.  https://doi.org/10.1021/jp074319i CrossRefGoogle Scholar
  116. Tee SY, Win KY, Teo WS, Koh LD, Liu S, Teng CP, Han MY (2017) Recent progress in energy-driven water splitting. Adv Sci 4:1600337.  https://doi.org/10.1002/advs.201600337 CrossRefGoogle Scholar
  117. Tentu RD, Basu S (2017) Photocatalytic water splitting for hydrogen production. Curr Opin Electrochem 5:56–62.  https://doi.org/10.1016/j.coelec.2017.10.019 CrossRefGoogle Scholar
  118. Teoh WY, Scott JA, Amal R (2012) Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J Phys Chem Lett 3:629–639.  https://doi.org/10.1021/jz3000646. CrossRefGoogle Scholar
  119. Tojo S, Tachikawa T, Fujitsuka M, Majima T (2004) Oxidation processes of aromatic sulfides by hydroxyl radicals in colloidal solution of TiO2 during pulse radiolysis. Chem Phys Lett 384:312–316.  https://doi.org/10.1016/j.cplett.2003.11.109 CrossRefGoogle Scholar
  120. Tsai YP, Doong RA, Yang JC, Wu YJ (2011) Photo-reduction and adsorption in aqueous Cr(VI) solution by titanium dioxide, carbon nanotubes and their composite. J Chem Technol Biotechnol 86:949–956.  https://doi.org/10.1002/jctb.2605 CrossRefGoogle Scholar
  121. Vinuth M, Naik HSB, sekhar KC, Manjanna J, Vinoda BM (2015) Environmental remediation of hexavalent chromium in aqueous medium using Fe(II)-montmorillonite as reductant. Proc Earth Planet Sci 11:275–283.  https://doi.org/10.1016/j.proeps.2015.06.036 CrossRefGoogle Scholar
  122. Wahab AK, Ould-Chikh S, Meyer K, Idriss H (2017) On the “possible” synergism of the different phases of TiO2 in photo-catalysis for hydrogen production. J Catal 352:657–671.  https://doi.org/10.1016/j.jcat.2017.04.033 CrossRefGoogle Scholar
  123. Wang X, Pehkonen SO, Ray AK (2004) Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation. Ind Eng Chem Res 43:1665–1672.  https://doi.org/10.1021/ie030580j CrossRefGoogle Scholar
  124. Wang C, Thompson RL, Baltrus J, Matranga C (2010) Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts. J Phys Chem Lett 1:48–53.  https://doi.org/10.1021/jz9000032 CrossRefGoogle Scholar
  125. Wang X, Ni Q, Zeng D, Liao G, Xie C (2016) Charge separation in branched TiO2 nanorod array homojunction aroused by quantum effect for enhanced photocatalytic decomposition of gaseous benzene. Appl Surf Sci 389:165–172.  https://doi.org/10.1016/j.apsusc.2016.07.090 CrossRefGoogle Scholar
  126. Wang M, Ju P, Li J, Zhao Y, Han X, Hao Z (2017a) Facile synthesis of MoS2/g-C3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting. ACS Sustain Chem Eng 5:7878–7886.  https://doi.org/10.1021/acssuschemeng.7b01386 CrossRefGoogle Scholar
  127. Wang P, Wu T, Wang C, Hou J, Qian J, Ao Y (2017b) Combining heterojunction engineering with surface cocatalyst modification to synergistically enhance the photocatalytic hydrogen evolution performance of cadmium sulfide nanorods. ACS Sustain Chem Eng 5:7670–7677.  https://doi.org/10.1021/acssuschemeng.7b01043 CrossRefGoogle Scholar
  128. Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube-TiO2 composites. Adv Mater 21:2233–2239.  https://doi.org/10.1002/adma.200802738 CrossRefGoogle Scholar
  129. Yan Y, Miao J, Yang Z, Xiao F-X, Bin Yang H, Liu B, Yang Y (2015) Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem Soc Rev 44:3295–3346.  https://doi.org/10.1039/C4CS00492B CrossRefGoogle Scholar
  130. Yang J, Wang D, Zhou X, Li C (2013) A theoretical study on the mechanism of photocatalytic oxygen evolution on BiVO4 in aqueous solution. Chem Eur J 19:1320–1326.  https://doi.org/10.1002/chem.201202365 CrossRefGoogle Scholar
  131. Ye R, Fang H, Zheng Y-Z, Li N, Wang Y, Tao X (2016.) acsami.6b01850) Fabrication of CoTiO3/g-C3N4 hybrid photocatalysts with enhanced H2 evolution: Z-scheme photocatalytic mechanism insight. ACS Appl Mater Interfaces.  https://doi.org/10.1021/acsami.6b01850
  132. Yu JH, Joo J, Park HM, Baik S-I, Kim YW, Kim SC, Hyeon T (2005) Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J Phys Chem B 109:20842–20846.  https://doi.org/10.1021/JA044593F CrossRefGoogle Scholar
  133. Yu Y, Chen G, Wang Q, Li Y (2011) Hierarchical architectures of porous ZnS-based microspheres by assembly of heterostructure nanoflakes: lateral oriented attachment mechanism and enhanced photocatalytic activity. Energy Environ Sci 4:3652.  https://doi.org/10.1039/c1ee01271a CrossRefGoogle Scholar
  134. Yuan J, Zhang X, Li H, Wang K, Gao S, Yin Z, Yu H, Zhu X, Xiong Z, Xie Y (2014) TiO2/SnO2 double-shelled hollow spheres-highly efficient photocatalyst for the degradation of rhodamine B. Catal Commun 60:129–133.  https://doi.org/10.1016/j.catcom.2014.11.032. CrossRefGoogle Scholar
  135. Zhang W-H, Zhang W-D (2013) One-pot solvothermal strategy for the synthesis of ultrathin ZnS nanowires. Mater Lett 98:5–7.  https://doi.org/10.1016/J.MATLET.2013.01.128 CrossRefGoogle Scholar
  136. Zhang KL, Liu CM, Huang FQ, Zheng C, Wang WD (2006) Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl Catal B Environ 68:125–129.  https://doi.org/10.1016/j.apcatb.2006.08.002 CrossRefGoogle Scholar
  137. Zhang X, Ai Z, Jia F, Zhang L (2008) Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J Phys Chem C 112:747–753.  https://doi.org/10.1021/jp077471t CrossRefGoogle Scholar
  138. Zhang Q, Liu S-J, Yu S-H (2009) Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future. J Mater Chem 19:191–207.  https://doi.org/10.1039/B807760F CrossRefGoogle Scholar
  139. Zhang YJ, Sethuraman V, Michalsky R, Peterson AA (2014) Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal 4:3742–3748.  https://doi.org/10.1021/cs5012298 CrossRefGoogle Scholar
  140. Zhang P, Wang T, Gong J (2017) Current mechanistic understanding of surface reactions over water-splitting photocatalysts. Chemistry 4:1–23.  https://doi.org/10.1016/j.chempr.2017.11.003 CrossRefGoogle Scholar
  141. Zhao J, Yan J, Jia H, Zhong S, Zhang X, Xu L (2016) BiVO4/g-C3N4 composite visible-light photocatalyst for effective elimination of aqueous organic pollutants. J Mol Catal A Chem 424:162–170.  https://doi.org/10.1016/j.molcata.2016.08.025 CrossRefGoogle Scholar
  142. Zhou L, Wang W, Xu H, Sun S, Shang M (2009) Bi2O3 hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis. Chem Eur J 15:1776–1782.  https://doi.org/10.1002/chem.200801234 CrossRefGoogle Scholar
  143. Zhou L, Wang L, Lei J, Liu Y, Zhang J (2017) Fabrication of TiO2/Co-g-C3N4 heterojunction catalyst and its photocatalytic performance. Catal Commun 89:125–128.  https://doi.org/10.1016/j.catcom.2016.09.022 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vagner R. de Mendonça
    • 1
    Email author
  • Osmando F. Lopes
    • 2
  • André E. Nogueira
    • 3
  • Gelson T. S. T. da Silva
    • 4
    • 5
  • Caue Ribeiro
    • 5
    • 6
  1. 1.Federal Institute of EducationScience and Technology of São PauloItapetininga-SPBrazil
  2. 2.Institute of ChemistryFederal University of UberlândiaUberlândia-MGBrazil
  3. 3.Department of Chemistry, Institute of Exact and Biological SciencesFederal University of Ouro PretoOuro Preto-MGBrazil
  4. 4.Department of ChemistryFederal University of São CarlosSão Carlos-SPBrazil
  5. 5.Institute of Energy and Climate Research (IEK-3)Forschungszentrum Jülich GmbHGermany
  6. 6.Embrapa InstrumentationSão Carlos-SPBrazil

Personalised recommendations