Advertisement

Supporting Materials for Immobilisation of Nano-photocatalysts

  • R. Goutham
  • R. Badri Narayan
  • B. Srikanth
  • K. P. GopinathEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 29)

Abstract

This paper provides a critical review on the application of various supporting media for immobilising commonly used photocatalysts for degrading organic pollutants. The immobilisation of photocatalysts can exclude expensive and infeasible post-treatment recovery of spent photocatalysts at a large scale. Certain usually implemented immobilisation aids such as zeolites, clay and ceramics, carbonaceous materials, glass, cellulosic materials, polymers and metallic agents which have been already studied by a lot of researchers have been reviewed. The study justified that factors like low density, ease of availability, high durability, mechanical stability and chemical inertness are important factors required for the selection of suitable supports for catalysts. Common techniques for immobilisation such as cold plasma discharge, RF magnetron sputtering, dip coating, polymer-assisted hydrothermal decomposition, solvent casting, photo-etching, spray pyrolysis and electrophoretic deposition have been discussed in depth. Finally, certain usual techniques employed for the characterisation of the catalyst particles and their applications are also discussed.

Keywords

Photocatalysis Immobilisation Electrodeposition Thermal treatment Sol-gel method Sold plasma discharge RF magnetron sputtering Photo-etching Electrophoretic deposition Polymer-assisted hydrothermal decomposition 

References

  1. Ahern JC, Fairchild R, Thomas JS et al (2015) Characterization of BiOX compounds as photocatalysts for the degradation of pharmaceuticals in water. Appl Catal B Environ 179:229–238.  https://doi.org/10.1016/j.apcatb.2015.04.025 CrossRefGoogle Scholar
  2. Akerdi AG, Bahrami SH, Arami M, Pajootan E (2016) Photocatalytic discoloration of Acid Red 14 aqueous solution using titania nanoparticles immobilized on graphene oxide fabricated plate. Chemosphere 159:293–299.  https://doi.org/10.1016/j.chemosphere.2016.06.020 CrossRefGoogle Scholar
  3. Alrousan DMA, Polo-López MI, Dunlop PSM et al (2012) Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors. Appl Catal B Environ 128:126–134.  https://doi.org/10.1016/j.apcatb.2012.07.038 CrossRefGoogle Scholar
  4. Asahi R, Morikawa T, Ohwaki T et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271.  https://doi.org/10.1126/science.1061051 CrossRefGoogle Scholar
  5. Baba K, Bulou S, Choquet P, Boscher ND (2017) Photocatalytic anatase TiO 2 thin films on polymer optical fiber using atmospheric-pressure plasma. ACS Appl Mater Interfaces 9:13733–13741.  https://doi.org/10.1021/acsami.7b01398 CrossRefGoogle Scholar
  6. Babu VJ, Sireesha M, Bhavatharini RSR, Ramakrishna S (2016) Electrospun BiOBr lamellae for efficient photocatalysis on ARS dye degradationGoogle Scholar
  7. Bansal NP, Doremus RH (2013) Handbook of glass properties. Elsevier Science, New YorkGoogle Scholar
  8. Barrocas B, Sério S, Rovisco A et al (2016) Removal of rhodamine 6G dye contaminant by visible light driven immobilized Ca1−xLnxMnO3 (Ln=Sm, Ho; 0.1≤x≤0.4) photocatalysts. Appl Surf Sci 360:798–806.  https://doi.org/10.1016/j.apsusc.2015.11.070 CrossRefGoogle Scholar
  9. Bel Hadjltaief H, Ben Ameur S, Da Costa P et al (2018) Photocatalytic decolorization of cationic and anionic dyes over ZnO nanoparticle immobilized on natural Tunisian clay. Appl Clay Sci 152:148–157.  https://doi.org/10.1016/J.CLAY.2017.11.008 CrossRefGoogle Scholar
  10. Bogaerts A, Neyts E, Gijbels R, van der Mullen J (2002) Gas discharge plasmas and their applications. Spectrochim Acta Part B At Spectrosc 57:609–658.  https://doi.org/10.1016/S0584-8547(01)00406-2 CrossRefGoogle Scholar
  11. Boiarkina I, Norris S, Patterson DA (2013) Investigation into the effect of flow structure on the photocatalytic degradation of methylene blue and dehydroabietic acid in a spinning disc reactor. Chem Eng J 222:159–171CrossRefGoogle Scholar
  12. Bu Y, Li F, Zhang Y et al (2016) Immobilizing CdS nanoparticles and MoS2/RGO on Zr-based metal-organic framework 12-tungstosilicate@UiO-67 toward enhanced photocatalytic H2 evolution. RSC Adv 6:40560–40566.  https://doi.org/10.1039/C6RA05522B CrossRefGoogle Scholar
  13. Byrne JA, Eggins BR, Brown NMD et al (1998) Immobilisation of TiO2 powder for the treatment of polluted water. Appl Catal B Environ 17:25–36.  https://doi.org/10.1016/S0926-3373(97)00101-X CrossRefGoogle Scholar
  14. Cao S, Liu B, Fan L et al (2014) Highly antibacterial activity of N-doped TiO2 thin films coated on stainless steel brackets under visible light irradiation. Appl Surf Sci 309:119–127.  https://doi.org/10.1016/j.apsusc.2014.04.198 CrossRefGoogle Scholar
  15. Carneiro N, Souto AP, Silva E et al (2001) Dyeability of corona-treated fabrics. Color Technol 117:298–302.  https://doi.org/10.1111/j.1478-4408.2001.tb00079.x CrossRefGoogle Scholar
  16. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027.  https://doi.org/10.1016/j.watres.2010.02.039 CrossRefGoogle Scholar
  17. Chowdhury S, Balasubramanian R (2014) Graphene/semiconductor nanocomposites (GSNs) for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: a review. Appl Catal B Environ 160:307–324.  https://doi.org/10.1016/j.apcatb.2014.05.035 CrossRefGoogle Scholar
  18. Cruz M, Gomez C, Duran-Valle CJ et al (2015) Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Appl Surf Sci.  https://doi.org/10.1016/j.apsusc.2015.09.268
  19. Darvishi Cheshmeh Soltani R, Rezaee A, Safari M et al (2015) Photocatalytic degradation of formaldehyde in aqueous solution using ZnO nanoparticles immobilized on glass plates. Desalin Water Treat 53:1613–1620.  https://doi.org/10.1080/19443994.2013.855674 CrossRefGoogle Scholar
  20. Das A, Das SK (2009) Microwave Engineering 2E. McGraw-Hill Education (India) Pvt Limited, New DelhiGoogle Scholar
  21. de la Garza M, Hernández T, Colás R, Gómez I (2010) Deposition of gold nanoparticles on glass substrate by ultrasonic spray pyrolysis. Mater Sci Eng B 174:9–12.  https://doi.org/10.1016/j.mseb.2010.03.068 CrossRefGoogle Scholar
  22. De Lasa HI, Serrano B, Salaices M (2005) Photocatalytic reaction engineering. Springer, BerlinCrossRefGoogle Scholar
  23. Dijkstra MF, Michorius A, Buwalda H et al (2001) Comparison of the efficiency of immobilized and suspended systems in photocatalytic degradation. Catal Today 66:487–494.  https://doi.org/10.1016/S0920-5861(01)00257-7 CrossRefGoogle Scholar
  24. Djošić MS, Mišković-Stanković VB, Janaćković DT et al (2006) Electrophoretic deposition and characterization of boehmite coatings on titanium substrate. Colloids Surf A Physicochem Eng Asp 274:185–191.  https://doi.org/10.1016/j.colsurfa.2005.08.048 CrossRefGoogle Scholar
  25. Doerffler W, Hauffe K (1964) Heterogeneous photocatalysis II. The mechanism of the carbon monoxide oxidation at dark and illuminated zinc oxide surfaces. J Catal 3:171–178.  https://doi.org/10.1016/0021-9517(64)90124-1 CrossRefGoogle Scholar
  26. Doll TE, Frimmel FH (2005) Cross-flow microfiltration with periodical back-washing for photocatalytic degradation of pharmaceutical and diagnostic residues–evaluation of the long-term stability of the photocatalytic activity of TiO2. Water Res 39:847–854.  https://doi.org/10.1016/J.WATRES.2004.11.029 CrossRefGoogle Scholar
  27. Dong Y, Tang D, Li C (2014) Photocatalytic oxidation of methyl orange in water phase by immobilized TiO2-carbon nanotube nanocomposite photocatalyst. Appl Surf Sci 296:1–7.  https://doi.org/10.1016/j.apsusc.2013.12.128 CrossRefGoogle Scholar
  28. Dunlop PSM, McMurray TA, Hamilton JWJ, Byrne JA (2008) Photocatalytic inactivation of Clostridium perfringens spores on TiO2 electrodes. J Photochem Photobiol A Chem 196:113–119.  https://doi.org/10.1016/j.jphotochem.2007.11.024 CrossRefGoogle Scholar
  29. El-Roz M, Haidar Z, Lakiss L et al (2013) Immobilization of TiO2 nanoparticles on natural Luffa cylindrica fibers for photocatalytic applications. RSC Adv 3:3438.  https://doi.org/10.1039/c2ra22438k CrossRefGoogle Scholar
  30. Endres K, Mennig M, Amlung M et al (1999) Enhancement of fracture strength of cutted plate glass by the application of SiO2 sol-gel coatings. Thin Solid Films 351:132–136.  https://doi.org/10.1016/S0040-6090(99)00337-5 CrossRefGoogle Scholar
  31. Expósito AJ, Patterson DA, Mansor WSW et al (2017) Antipyrine removal by TiO2 photocatalysis based on spinning disc reactor technology. J Environ Manag 187:504–512.  https://doi.org/10.1016/j.jenvman.2016.11.012 CrossRefGoogle Scholar
  32. Fathinia M, Khataee A, Naseri A, Aber S (2015) Monitoring simultaneous photocatalytic-ozonation of mixture of pharmaceuticals in the presence of immobilized TiO2 nanoparticles using MCR-ALS: identification of intermediates and multi-response optimization approach. Spectrochim Acta Part A Mol Biomol Spectrosc 136:1275–1290.  https://doi.org/10.1016/j.saa.2014.10.014 CrossRefGoogle Scholar
  33. Gadhi TA, Gómez-Velázquez LS, Bizarro M et al (2017) Evaluation of the photodiscoloration efficiency of β-Bi2O3 films deposited on different substrates by pneumatic spray pyrolysis. Thin Solid Films 638:119–126.  https://doi.org/10.1016/J.TSF.2017.07.037 CrossRefGoogle Scholar
  34. Gar Alalm M, Tawfik A, Ookawara S (2015) Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: operational conditions, kinetics, and costs. J Water Process Eng 8:55–63.  https://doi.org/10.1016/j.jwpe.2015.09.007 CrossRefGoogle Scholar
  35. Ghoreishian SM, Badii K, Norouzi M, Malek K (2016) Effect of cold plasma pre-treatment on photocatalytic activity of 3D fabric loaded with nano-photocatalysts: response surface methodology. Appl Surf Sci 365:252–262.  https://doi.org/10.1016/j.apsusc.2015.12.155 CrossRefGoogle Scholar
  36. Guan Y, Qian H, Guo J et al (2015) Synthesis of acidified palygorskite/BiOI with exceptional performances of adsorption and visible-light photoactivity for efficient treatment of aniline wastewater. Appl Clay Sci 114:124–132.  https://doi.org/10.1016/j.clay.2015.05.017 CrossRefGoogle Scholar
  37. Guo H, Kemell M, Heikkilä M, Leskelä M (2010) Noble metal-modified TiO2 thin film photocatalyst on porous steel fiber support. Appl Catal B Environ 95:358–364.  https://doi.org/10.1016/j.apcatb.2010.01.014 CrossRefGoogle Scholar
  38. Hatat-Fraile M, Liang R, Arlos MJ et al (2017) Concurrent photocatalytic and filtration processes using doped TiO2 coated quartz fiber membranes in a photocatalytic membrane reactor. Chem Eng J 330:531–540.  https://doi.org/10.1016/J.CEJ.2017.07.141 CrossRefGoogle Scholar
  39. He Y, Sutton NB, Rijnaarts HHH, Langenhoff AAM (2016) Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation. Appl Catal B Environ 182:132–141.  https://doi.org/10.1016/j.apcatb.2015.09.015 CrossRefGoogle Scholar
  40. Hernandez-Gordillo A, Obregon S, Paraguay-Delgado F, Rodriguez-Gonzalez V (2015) Effective photoreduction of a nitroaromatic environmental endocrine disruptor by AgNPs functionalized on nanocrystalline TiO2. RSC Adv 5:15194–15197.  https://doi.org/10.1039/C5RA00094G CrossRefGoogle Scholar
  41. Hoffmann C, Berganza C, Zhang J (2013) Cold Atmospheric Plasma: methods of production and application in dentistry and oncology. Med Gas Res 3:21CrossRefGoogle Scholar
  42. Huang M, Xu C, Wu Z et al (2008) Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes Pigments 77:327–334.  https://doi.org/10.1016/j.dyepig.2007.01.026 CrossRefGoogle Scholar
  43. Hung C-H, Yuan C, Li H-W (2017) Photodegradation of diethyl phthalate with PANi/CNT/TiO2 immobilized on glass plate irradiated with visible light and simulated sunlight—effect of synthesized method and pH. J Hazard Mater 322:243–253.  https://doi.org/10.1016/J.JHAZMAT.2016.01.073 CrossRefGoogle Scholar
  44. Jansson I, Yoshiiri K, Hori H et al (2016) Visible light responsive Zeolite/WO3–Pt hybrid photocatalysts for degradation of pollutants in air. Appl Catal A Gen 521:208–219.  https://doi.org/10.1016/j.apcata.2015.12.015 CrossRefGoogle Scholar
  45. Justicia I, Ordejón P, Canto G et al (2002) Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis. Adv Mater 14:1399–1402.  https://doi.org/10.1002/1521-4095(20021002)14:19<1399::AID-ADMA1399>3.0.CO;2-C CrossRefGoogle Scholar
  46. Kaur T, Sraw A, Wanchoo RK, Toor AP (2018) Solar assisted degradation of carbendazim in water using clay beads immobilized with TiO2 & Fe doped TiO2. Sol Energy 162:45–56.  https://doi.org/10.1016/J.SOLENER.2017.11.033 CrossRefGoogle Scholar
  47. Keane DA, McGuigan KG, Ibanez PF et al (2014) Solar photocatalysis for water disinfection: materials and reactor design. Cat Sci Technol 4:1211–1226.  https://doi.org/10.1039/C4CY00006D CrossRefGoogle Scholar
  48. Khan SUM, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245.  https://doi.org/10.1126/science.1075035 CrossRefGoogle Scholar
  49. Kim I-S, Baek M, Choi S-J (2010) Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J Nanosci Nanotechnol 10(5):3453–3458CrossRefGoogle Scholar
  50. Kovacic M, Salaeh S, Kusic H et al (2016) Solar-driven photocatalytic treatment of diclofenac using immobilized TiO2-based zeolite composites. Environ Sci Pollut Res 23:17982–17994.  https://doi.org/10.1007/s11356-016-6985-6 CrossRefGoogle Scholar
  51. Kuo CG, Hsu CY, Wang SS, Wen DC (2012) Photocatalytic characteristics of TiO2 films deposited by magnetron sputtering on polycarbonate at room temperature. Appl Surf Sci 258:6952–6957.  https://doi.org/10.1016/j.apsusc.2012.03.142 CrossRefGoogle Scholar
  52. Kushwaha HS, Parmesh G, Vaish R, Varma KBR (2015) TiO2 microcrystallized glass plate mediated photocatalytic degradation of estrogenic pollutant in water. J Non Cryst Solids 408:13–17.  https://doi.org/10.1016/j.jnoncrysol.2014.10.007 CrossRefGoogle Scholar
  53. Lee S-L, Ho L-N, Ong S-A et al (2017) A highly efficient immobilized ZnO/Zn photoanode for degradation of azo dye Reactive Green 19 in a photocatalytic fuel cell. Chemosphere 166:118–125.  https://doi.org/10.1016/j.chemosphere.2016.09.082 CrossRefGoogle Scholar
  54. Lei P, Wang F, Gao X et al (2012) Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants. J Hazard Mater 227:185–194.  https://doi.org/10.1016/j.jhazmat.2012.05.029 CrossRefGoogle Scholar
  55. Li M, Zhao L (2010) Preparation and photoelectrochemical study of BiVO4 thin films deposited by ultrasonic spray pyrolysis. Int J Hydrog Energy 35:7127–7133.  https://doi.org/10.1016/j.ijhydene.2010.02.026 CrossRefGoogle Scholar
  56. Li B, Huang H, Guo Y, Zhang Y (2015) Diatomite-immobilized BiOI hybrid photocatalyst: facile deposition synthesis and enhanced photocatalytic activity. Appl Surf Sci 353:1179–1185.  https://doi.org/10.1016/j.apsusc.2015.07.049 CrossRefGoogle Scholar
  57. Lin L, Wang H, Luo H, Xu P (2015) Enhanced photocatalysis using side-glowing optical fibers coated with Fe-doped TiO2 nanocomposite thin films. J Photochem Photobiol A Chem 307:88–98.  https://doi.org/10.1016/j.jphotochem.2015.04.010 CrossRefGoogle Scholar
  58. Lin L, Wang H, Xu P (2016) Immobilized TiO2-reduced graphene oxide nanocomposites on optical fibers as high performance photocatalysts for degradation of pharmaceuticals. Chem Eng J.  https://doi.org/10.1016/j.cej.2016.04.024
  59. Liriano-Jorge CF, Sohmen U, Özkan A et al (2014) TiO 2 photocatalyst nanoparticle separation: flocculation in different matrices and use of powdered activated carbon as a precoat in low-cost fabric filtration. Adv Mater Sci Eng 2014:1–12.  https://doi.org/10.1155/2014/602495 CrossRefGoogle Scholar
  60. Maeng SK, Cho K, Jeong B et al (2015) Substrate-immobilized electrospun TiO2 nanofibers for photocatalytic degradation of pharmaceuticals: the effects of pH and dissolved organic matter characteristics. Water Res 86:25–34.  https://doi.org/10.1016/j.watres.2015.05.032 CrossRefGoogle Scholar
  61. Magalhães F, Moura FCC, Lago RM (2011) TiO2/LDPE composites: a new floating photocatalyst for solar degradation of organic contaminants. Desalination 276:266–271.  https://doi.org/10.1016/j.desal.2011.03.061 CrossRefGoogle Scholar
  62. Mahadik MA, Shinde SS, Mohite VS et al (2014) Visible light catalysis of rhodamine B using nanostructured Fe2O3, TiO2 and TiO2/Fe2O3 thin films. J Photochem Photobiol B 133:90–98.  https://doi.org/10.1016/j.jphotobiol.2014.01.017 CrossRefGoogle Scholar
  63. Majidnia Z, Idris A (2016) Synergistic effect of maghemite and titania nanoparticles in PVA-alginate encapsulated beads for photocatalytic reduction of Pb(II). Chem Eng Commun 203:425–434.  https://doi.org/10.1080/00986445.2015.1012257 CrossRefGoogle Scholar
  64. Maleki A, Safari M, Rezaee R et al (2016) Photocatalytic degradation of humic substances in the presence of ZnO nanoparticles immobilized on glass plates under ultraviolet irradiation. Sep Sci Technol 51:2484–2489.  https://doi.org/10.1080/01496395.2016.1213746 CrossRefGoogle Scholar
  65. Manassero A, Satuf ML, Alfano OM (2016) Photocatalytic degradation of an emerging pollutant by TiO2-coated glass rings: a kinetic study. Environ Sci Pollut Res 24:6031–6039.  https://doi.org/10.1007/s11356-016-6855-2 CrossRefGoogle Scholar
  66. Mariner RH, Surdam RC (1970) Alkalinity and formation of zeolites in saline alkaline lakes. Science 170:977–980.  https://doi.org/10.1126/science.170.3961.977 CrossRefGoogle Scholar
  67. Marothu VK, Gorrepati M, Idris NF et al (2014) Photocatalysis of β-blockers – an overview. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2014.10.044
  68. Martins PM, Gomez V, Lopes AC et al (2014) Improving photocatalytic performance and recyclability by development of Er-doped and Er/Pr-codoped TiO2/poly (vinylidene difluoride) – trifluoroethylene composite membranes. J Phys Chem C 118:27944–27953CrossRefGoogle Scholar
  69. Marugán J, van Grieken R, Pablos C et al (2015) Kinetic modelling of Escherichia coli inactivation in a photocatalytic wall reactor. Catal Today 240:9–15.  https://doi.org/10.1016/j.cattod.2014.03.005 CrossRefGoogle Scholar
  70. Mascolo G, Comparelli R, Curri ML et al (2007) Photocatalytic degradation of methyl red by TiO2: comparison of the efficiency of immobilized nanoparticles versus conventional suspended catalyst. J Hazard Mater 142:130–137.  https://doi.org/10.1016/j.jhazmat.2006.07.068 CrossRefGoogle Scholar
  71. Matsumura M, Furukawa S, Saho Y, Tsubomura H (1985) Cadmium sulfide photocatalyzed hydrogen production from aqueous solutions of sulfite: effect of crystal structure and preparation method of the catalyst. J Phys Chem 89:1327–1329.  https://doi.org/10.1021/j100254a001 CrossRefGoogle Scholar
  72. Miranda-García N, Suárez S, Maldonado MI et al (2014) Regeneration approaches for TiO2 immobilized photocatalyst used in the elimination of emerging contaminants in water. Catal Today 230:27–34.  https://doi.org/10.1016/j.cattod.2013.12.048 CrossRefGoogle Scholar
  73. Mohamed RM, Mohamed MM (2008) Copper (II) phthalocyanines immobilized on alumina and encapsulated inside zeolite-X and their applications in photocatalytic degradation of cyanide: a comparative study. Appl Catal A Gen 340:16–24.  https://doi.org/10.1016/j.apcata.2008.01.029 CrossRefGoogle Scholar
  74. Mohite SV, Ganbavle VV, Patil VV, Rajpure KY (2016) Photoelectrocatalytic degradation of benzoic acid using immobilized tungsten trioxide photocatalyst. Mater Chem Phys 183:439–446.  https://doi.org/10.1016/j.matchemphys.2016.08.051 CrossRefGoogle Scholar
  75. Molina R, Segura Y, Martínez F, Melero JA (2012) Immobilization of active and stable goethite coated-films by a dip-coating process and its application for photo-Fenton systems. Chem Eng J 203:212–222.  https://doi.org/10.1016/j.cej.2012.07.024 CrossRefGoogle Scholar
  76. Muller HD, Steinbach F (1970) Decomposition of isopropyl alcohol photosensitized by zinc oxide. Nature 225:728–729CrossRefGoogle Scholar
  77. Murgolo S, Petronella F, Ciannarella R et al (2015) UV and solar-based photocatalytic degradation of organic pollutants by nano-sized TiO2 grown on carbon nanotubes. Catal Today 240:114–124.  https://doi.org/10.1016/j.cattod.2014.04.021 CrossRefGoogle Scholar
  78. Murgolo S, Yargeau V, Gerbasi R et al (2016) A new supported TiO2 film deposited on stainless steel for the photocatalytic degradation of contaminants of emerging concern. Chem Eng J.  https://doi.org/10.1016/j.cej.2016.05.125
  79. Murgolo S, Yargeau V, Gerbasi R et al (2017) A new supported TiO2 film deposited on stainless steel for the photocatalytic degradation of contaminants of emerging concern. Chem Eng J 318:103–111.  https://doi.org/10.1016/J.CEJ.2016.05.125 CrossRefGoogle Scholar
  80. Nadarajan R, Wan Abu Bakar WA, Ali R, Ismail R (2016) Photocatalytic degradation of 1,2-dichlorobenzene using immobilized TiO2/SnO2/WO3 photocatalyst under visible light: application of response surface methodology. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2016.03.006
  81. Naraginti S, Li Y, Wu Y et al (2016) Mechanistic study of visible light driven photocatalytic degradation of EDC 17[small alpha]-ethinyl estradiol and azo dye Acid Black-52: phytotoxicity assessment of intermediates. RSC Adv 6:87246–87257.  https://doi.org/10.1039/C6RA20702B CrossRefGoogle Scholar
  82. Nawi MA, Ngoh YS, Zain SM (2012) Photoetching of immobilized – PVC composite for improved photocatalytic activity. Int J Photoenergy 2012:1–12.  https://doi.org/10.1155/2012/859294 CrossRefGoogle Scholar
  83. Norman M, Żółtowska-Aksamitowska S, Zgoła-Grześkowiak A et al (2018) Iron(III) phthalocyanine supported on a spongin scaffold as an advanced photocatalyst in a highly efficient removal process of halophenols and bisphenol A. J Hazard Mater 347:78–88.  https://doi.org/10.1016/J.JHAZMAT.2017.12.055 CrossRefGoogle Scholar
  84. O’Neal Tugaoen H, Garcia-Segura S, Hristovski K, Westerhoff P (2018) Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment. Sci Total Environ 613–614:1331–1338.  https://doi.org/10.1016/J.SCITOTENV.2017.09.242 CrossRefGoogle Scholar
  85. Pajootan E, Rahimdokht M, Arami M (2017) Carbon and CNT fabricated carbon substrates for TiO2 nanoparticles immobilization with industrial perspective of continuous photocatalytic elimination of dye molecules. J Ind Eng Chem 55:149–163.  https://doi.org/10.1016/J.JIEC.2017.06.039 CrossRefGoogle Scholar
  86. Pant HR, Pant B, Sharma RK et al (2013) Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process. Ceram Int 39:1503–1510.  https://doi.org/10.1016/j.ceramint.2012.07.097 CrossRefGoogle Scholar
  87. Pant HR, Adhikari SP, Pant B et al (2015) Immobilization of TiO2 nanofibers on reduced graphene sheets: novel strategy in electrospinning. J Colloid Interface Sci 457:174–179.  https://doi.org/10.1016/j.jcis.2015.06.043 CrossRefGoogle Scholar
  88. Parra S, Elena Stanca S, Guasaquillo I, Ravindranathan Thampi K (2004) Photocatalytic degradation of atrazine using suspended and supported TiO2. Appl Catal B Environ 51:107–116.  https://doi.org/10.1016/j.apcatb.2004.01.021 CrossRefGoogle Scholar
  89. Parvinzadeh M, Ebrahimi I (2011) Atmospheric air-plasma treatment of polyester fiber to improve the performance of nanoemulsion silicone. Appl Surf Sci 257:4062–4068.  https://doi.org/10.1016/j.apsusc.2010.11.175 CrossRefGoogle Scholar
  90. Paul B, Martens WN, Frost RL (2012) Immobilised anatase on clay mineral particles as a photocatalyst for herbicides degradation. Appl Clay Sci 57:49–54.  https://doi.org/10.1016/j.clay.2011.12.009 CrossRefGoogle Scholar
  91. Petronella F, Curri ML, Striccoli M et al (2015) Direct growth of shape controlled TiO2 nanocrystals onto SWCNTs for highly active photocatalytic materials in the visible. Appl Catal B Environ 178:91–99.  https://doi.org/10.1016/j.apcatb.2014.10.030 CrossRefGoogle Scholar
  92. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine 7:184–192.  https://doi.org/10.1016/j.nano.2010.10.001 CrossRefGoogle Scholar
  93. Quiñones DH, Rey A, Álvarez PM et al (2015) Boron doped TiO2 catalysts for photocatalytic ozonation of aqueous mixtures of common pesticides: diuron, o-phenylphenol, MCPA and terbuthylazine. Appl Catal B Environ 178:74–81.  https://doi.org/10.1016/j.apcatb.2014.10.036 CrossRefGoogle Scholar
  94. Radwan EK, Yu L, Achari G, Langford CH (2016) Photocatalytic ozonation of pesticides in a fixed bed flow through UVA-LED photoreactor. Environ Sci Pollut Res 23:21313–21318.  https://doi.org/10.1007/s11356-016-7346-1 CrossRefGoogle Scholar
  95. Ramasundaram S, Seid MG, Choe JW et al (2016) Highly reusable TiO2 nanoparticle photocatalyst by direct immobilization on steel mesh via PVDF coating, electrospraying, and thermal fixation. Chem Eng J 306:344–351.  https://doi.org/10.1016/j.cej.2016.07.077 CrossRefGoogle Scholar
  96. Rashid J, Barakat MA, Salah N, Habib SS (2015) ZnO-nanoparticles thin films synthesized by RF sputtering for photocatalytic degradation of 2-chlorophenol in synthetic wastewater. J Ind Eng Chem 23:134–139.  https://doi.org/10.1016/j.jiec.2014.08.006 CrossRefGoogle Scholar
  97. Ray S, Lalman JA (2016) Fabrication and characterization of an immobilized titanium dioxide (TiO2) nanofiber photocatalyst. Mater Today Proc 3:1582–1591.  https://doi.org/10.1016/j.matpr.2016.04.046 CrossRefGoogle Scholar
  98. Razak S, Nawi MA, Haitham K (2014) Fabrication, characterization and application of a reusable immobilized TiO2–PANI photocatalyst plate for the removal of reactive red 4 dye. Appl Surf Sci 319:90–98.  https://doi.org/10.1016/j.apsusc.2014.07.049 CrossRefGoogle Scholar
  99. Rollmann LD, Valyocsik EW, Shannon RD (2007) Zeolite molecular sieves. In: Inorganic syntheses. Wiley, New York, pp 61–68CrossRefGoogle Scholar
  100. Sabri NA, Nawi MA, Nawawi WI (2015) Porous immobilized C coated N doped TiO2 containing in-situ generated polyenes for enhanced visible light photocatalytic activity. Opt Mater (Amst) 48:258–266.  https://doi.org/10.1016/j.optmat.2015.08.010 CrossRefGoogle Scholar
  101. Sarkar S, Chakraborty S, Bhattacharjee C (2015) Photocatalytic degradation of pharmaceutical wastes by alginate supported TiO2 nanoparticles in packed bed photo reactor (PBPR). Ecotoxicol Environ Saf 121:263–270.  https://doi.org/10.1016/j.ecoenv.2015.02.035 CrossRefGoogle Scholar
  102. Scheirs J (2000) Compositional and failure analysis of polymers: a practical approach. Wiley, New YorkGoogle Scholar
  103. Serpone N (1997) Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J Photochem Photobiol A Chem 104:1–12.  https://doi.org/10.1016/S1010-6030(96)04538-8 CrossRefGoogle Scholar
  104. Shen C, Wang YJ, Xu JH, Luo GS (2015) Glass capillaries with TiO2 supported on inner wall as microchannel reactors. Chem Eng J 277:48–55.  https://doi.org/10.1016/j.cej.2015.04.013 CrossRefGoogle Scholar
  105. Singh P, Kaur D (2010) Room temperature growth of nanocrystalline anatase TiO2 thin films by dc magnetron sputtering. Phys B Condens Matter 405:1258–1266.  https://doi.org/10.1016/j.physb.2009.11.061 CrossRefGoogle Scholar
  106. Singh S, Mahalingam H, Singh PK (2013) Polymer-supported titanium dioxide photocatalysts for environmental remediation: a review. Appl Catal A Gen 462:178–195.  https://doi.org/10.1016/j.apcata.2013.04.039 CrossRefGoogle Scholar
  107. Sobhana SSL, Mehedi R, Malmivirta M et al (2016) Heteronuclear nanoparticles supported hydrotalcites containing Ni(II) and Fe(III) stable photocatalysts for Orange II degradation. Appl Clay Sci 132:641–649.  https://doi.org/10.1016/j.clay.2016.08.016
  108. Sonawane R, Hegde S, Dongare M (2003) Preparation of titanium(IV) oxide thin film photocatalyst by sol–gel dip coating. Mater Chem Phys 77:744–750.  https://doi.org/10.1016/S0254-0584(02)00138-4 CrossRefGoogle Scholar
  109. Song W, Zhang J, Guo J et al (2010) Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett 199:389–397.  https://doi.org/10.1016/j.toxlet.2010.10.003 CrossRefGoogle Scholar
  110. Sopajaree K, Qasim SA, Basak S, Rajeshwar K (1999) An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part II: experiments on the ultrafiltration unit and combined operation. J Appl Electrochem 29:1111–1118.  https://doi.org/10.1023/A:1003633309224 CrossRefGoogle Scholar
  111. Srikanth B, Goutham R, Badri Narayan R et al (2017) Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J Environ Manag 200:60–78.  https://doi.org/10.1016/j.jenvman.2017.05.063 CrossRefGoogle Scholar
  112. Sullivan KT, Kuntz JD, Gash AE (2012) Electrophoretic deposition and mechanistic studies of nano-Al/CuO thermites. J Appl Phys 112:24316.  https://doi.org/10.1063/1.4737464 CrossRefGoogle Scholar
  113. Suryavanshi RD, Mohite SV, Bagade AA et al (2018) Nanocrystalline immobilised ZnO photocatalyst for degradation of benzoic acid and methyl blue dye. Mater Res Bull 101:324–333.  https://doi.org/10.1016/J.MATERRESBULL.2018.01.042 CrossRefGoogle Scholar
  114. Tasbihi M, Călin I, Šuligoj A et al (2017) Photocatalytic degradation of gaseous toluene by using TiO2 nanoparticles immobilized on fiberglass cloth. J Photochem Photobiol A Chem 336:89–97.  https://doi.org/10.1016/J.JPHOTOCHEM.2016.12.025 CrossRefGoogle Scholar
  115. Teixeira S, Martins PM, Lanceros-Méndez S et al (2016) Reusability of photocatalytic TiO2 and ZnO nanoparticles immobilized in poly(vinylidene difluoride)-co-trifluoroethylene. Appl Surf Sci 384:497–504.  https://doi.org/10.1016/j.apsusc.2016.05.073 CrossRefGoogle Scholar
  116. Tsai SC, Song YL, Tsai CS et al (2004) Ultrasonic spray pyrolysis for nanoparticles synthesis. J Mater Sci 39:3647–3657.  https://doi.org/10.1023/B:JMSC.0000030718.76690.11 CrossRefGoogle Scholar
  117. Vaiano V, Sacco O, Sannino D, Ciambelli P (2015) Nanostructured N-doped TiO2 coated on glass spheres for the photocatalytic removal of organic dyes under UV or visible light irradiation. Appl Catal B Environ 170:153–161.  https://doi.org/10.1016/j.apcatb.2015.01.039 CrossRefGoogle Scholar
  118. Vaiano V, Sarno G, Sacco O, Sannino D (2017) Degradation of terephthalic acid in a photocatalytic system able to work also at high pressure. Chem Eng J 312:10–19.  https://doi.org/10.1016/J.CEJ.2016.11.115 CrossRefGoogle Scholar
  119. Veréb G, Ambrus Z, Pap Z et al (2014) Immobilization of crystallized photocatalysts on ceramic paper by titanium(IV) ethoxide and photocatalytic decomposition of phenol. React Kinet Mech Catal 113:293–303.  https://doi.org/10.1007/s11144-014-0734-y CrossRefGoogle Scholar
  120. Vevers WF, Jha AN (2008) Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17:410–420.  https://doi.org/10.1007/s10646-008-0226-9 CrossRefGoogle Scholar
  121. Wang P, Huang B, Qin X et al (2009a) Ag/AgBr/WO3·H2O: visible-light photocatalyst for bacteria destruction. Inorg Chem 48:10697–10702.  https://doi.org/10.1021/ic9014652 CrossRefGoogle Scholar
  122. Wang P, Huang B, Zhang X et al (2009b) Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. Chem A Eur J 15:1821–1824.  https://doi.org/10.1002/chem.200802327 CrossRefGoogle Scholar
  123. Wang B, de Godoi FC, Sun Z et al (2015a) Synthesis, characterization and activity of an immobilized photocatalyst: natural porous diatomite supported titania nanoparticles. J Colloid Interface Sci 438:204–211.  https://doi.org/10.1016/j.jcis.2014.09.064 CrossRefGoogle Scholar
  124. Wang S, Guan Y, Wang L et al (2015b) Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption–photocatalysis for efficient treatment of dye wastewater. Appl Catal B Environ 168:448–457.  https://doi.org/10.1016/j.apcatb.2014.12.047 CrossRefGoogle Scholar
  125. Wong ET, Chan KH, Irfan M et al (2015) Enhanced removal of cu(II) by photocatalytic reduction using maghemite PVA-alginate separable beads: kinetic and equilibrium studies. Sep Sci Technol 50:487–494.  https://doi.org/10.1080/01496395.2014.953177 CrossRefGoogle Scholar
  126. Xuzhuang Y, Yang D, Huaiyong Z et al (2009) Mesoporous structure with size controllable anatase attached on silicate layers for efficient photocatalysis. J Phys Chem C 113:8243–8248.  https://doi.org/10.1021/jp900622k CrossRefGoogle Scholar
  127. Yadini AE, Saufi H, Dunlop PSM et al (2014) Supported TiO 2 on borosilicate glass plates for efficient photocatalytic degradation of Fenamiphos. J Catal 2014:413693.  https://doi.org/10.1155/2014/413693 CrossRefGoogle Scholar
  128. Yang JL, An SJ, Park WI et al (2004) Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition. Adv Mater 16:1661–1664.  https://doi.org/10.1002/adma.200306673 CrossRefGoogle Scholar
  129. Zeng J, Liu S, Cai J, Zhang L (2010) TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation. J Phys Chem C 114:7806–7811.  https://doi.org/10.1021/jp1005617 CrossRefGoogle Scholar
  130. Zhang Y, Li Y (2004) Synthesis and characterization of monodisperse doped ZnS nanospheres with enhanced thermal stability. J Phys Chem B 108:17805–17811.  https://doi.org/10.1021/jp047446c CrossRefGoogle Scholar
  131. Zhang S, Du Y, Jiang H et al (2017) Controlled synthesis of TiO2 nanorod arrays immobilized on ceramic membranes with enhanced photocatalytic performance. Ceram Int 43:7261–7270.  https://doi.org/10.1016/J.CERAMINT.2017.03.019 CrossRefGoogle Scholar
  132. Zhao Q, Xie Y, Zhang Z, Bai X (2007) Size-selective synthesis of zinc sulfide hierarchical structures and their photocatalytic activity. Cryst Growth Des 7:153–158.  https://doi.org/10.1021/cg060521j CrossRefGoogle Scholar
  133. Zhou X, Shao C, Yang S et al (2018) Heterojunction of g -C3N4/BiOI immobilized on flexible electrospun polyacrylonitrile nanofibers: facile preparation and enhanced visible photocatalytic activity for floating photocatalysis. ACS Sustain Chem Eng 6:2316–2323.  https://doi.org/10.1021/acssuschemeng.7b03760 CrossRefGoogle Scholar
  134. Zhu H-Y, Jiang R, Fu Y-Q et al (2016) Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation. Appl Surf Sci 369:1–10.  https://doi.org/10.1016/j.apsusc.2016.02.025 CrossRefGoogle Scholar
  135. Zifang X, Juan C, Xiao Tong Z (2016) Research and analysis of the anti-UV performance of nano-TiO2 glass beads composite coating. Integr Ferroelectr 169:73–82.  https://doi.org/10.1080/10584587.2016.1163192 CrossRefGoogle Scholar
  136. Znad H, Abbas K, Hena S, Awual MR (2018) Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media. J Environ Chem Eng 6:218–227.  https://doi.org/10.1016/J.JECE.2017.11.077 CrossRefGoogle Scholar
  137. Zuo J (2010) Deposition of Ag nanostructures on TiO2 thin films by RF magnetron sputtering. Appl Surf Sci 256:7096–7101.  https://doi.org/10.1016/j.apsusc.2010.05.034 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • R. Goutham
    • 1
  • R. Badri Narayan
    • 1
  • B. Srikanth
    • 1
  • K. P. Gopinath
    • 1
    Email author
  1. 1.Department of Chemical EngineeringSSN College of EngineeringChennaiIndia

Personalised recommendations