Advertisement

Applications of OTRs in Gas Turbines and Boilers

  • Medhat A. NemitallahEmail author
  • Mohamed A. Habib
  • Hassan M. Badr
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The growing levels of carbon dioxide (CO2) emission in the atmosphere as a result of combustion of fossil fuel and the dissolved CO2 in oceans represent critical environmental concerns as they lead to global warming and ocean acidification (Babu et al. in Energy 85:261–279, 2015 [1]). Power plants using fossil fuel for the production of electrical energy are the major contributor to greenhouse gas emissions with 41% (International Energy Agency in World energy outlook, 2011 [2]). Due to recent sharp reduction in oil prices, the conversion to renewable energy sources is expected to take longer time.

References

  1. 1.
    Babu P, Linga P, Kumar R, Englezos P (2015) A review of the hydrate-based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 85:261–279CrossRefGoogle Scholar
  2. 2.
    International Energy Agency (2011) World energy outlookGoogle Scholar
  3. 3.
    Habib MA, Nemitallah M, Ben-Mansour R (2013) Recent development in oxy-combustion technology and its applications to gas turbine combustors and ITM reactors. Energy Fuels 27:2–19.  https://doi.org/10.1021/ef301266jCrossRefGoogle Scholar
  4. 4.
    Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE et al (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20(1):14–27CrossRefGoogle Scholar
  5. 5.
    Mondal MK, Balsora HK, Varshney P (2012) Progress and trends in CO2 capture/separation technologies: a review. Energy 46(1):431–441CrossRefGoogle Scholar
  6. 6.
    Habib MA, Salaudeen SA, Nemitallah MA, Ben-Mansour R, Mokheimer EMA (2016) Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor. Energy 96:654–665CrossRefGoogle Scholar
  7. 7.
    Mezghani K, Hamza A (2016) Application of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes in an oxy-fuel combustion reactor. J Membr Sci 518:254–262CrossRefGoogle Scholar
  8. 8.
    Turi DM, Chiesa P, Macchi E, Ghoniem AF (2016) High fidelity model of the oxygen flux across ion transport membrane reactor: mechanism characterization using experimental data. Energy 96:127–141CrossRefGoogle Scholar
  9. 9.
    Balachandran U, Kleefisch MS, Kobylinski TP, Morissette SL, Pei S (1997) Oxygen ion-conducting dense ceramic membranes (Assigned to Amoco Co.). US patent 5,639,437Google Scholar
  10. 10.
    Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review of state of the art. Ind Chem Eng 48(1):4638–4663CrossRefGoogle Scholar
  11. 11.
    Farooqui AE, Badr HM, Habib MA, Ben-Mansour R (2014) Numerical investigation of combustion characteristics in an oxygen transport reactor. Int J Energy Res 38(5):638–651CrossRefGoogle Scholar
  12. 12.
    Habib MA, Ahmed P, Ben-Mansour R, Badr HM, Kirchen P, Ghoniem AF (2013) Modeling of a combined ion transport and porous membrane reactor for oxy-combustion. J Membr Sci 446:230–243CrossRefGoogle Scholar
  13. 13.
    Farooqui AE, Habib MA, Badr HM, Ben-Mansour R (2013) Modeling of ion transport reactor for oxy-fuel combustion. Int J Energy Res 37(11):1265–1279CrossRefGoogle Scholar
  14. 14.
    Ben-Mansour R, Habib MA, Badr HM, Nemitallah M (2012) Characteristics of oxy-fuel combustion in an oxygen transport reactor. Energy Fuels 26(7):4599–4606CrossRefGoogle Scholar
  15. 15.
    Nemitallah MA, Habib MA, Mezghani K (2015) Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor. Energy 84:600–611CrossRefGoogle Scholar
  16. 16.
    Mezghani K, Hamza A, Habib MA, Lee D, Shao-Horn Y (2015) Effect of microstructure and thickness on oxygen permeation of La2NiO4+δ membranes. Ceram Int 42(1):666–672CrossRefGoogle Scholar
  17. 17.
    Habib MA, Ahmed P, Ben-Mansour R, Mezghani K, Alam Z, Shao-Horn Y, Ghoniem AF (2015) Experimental and numerical investigation of la2NiO4 membranes for oxygen separation: geometry optimization and model validation. J Energy Resour Technol Trans ASME 137(3):03110CrossRefGoogle Scholar
  18. 18.
    Wang L, Imashuku S, Grimaud A, Lee D, Mezghani K, Habib MA, Shao-Horn Y (2013) Enhancing oxygen permeation of electronically short-circuited oxygen-ion conductors by decorating with mixed ionic-electronic conducting oxides. ECS Electrochem Lett 2(11):F77–F81CrossRefGoogle Scholar
  19. 19.
    Imashuku S, Wang L, Mezghani K, Habib MA, Shao-Horn Y (2013) Oxygen permeation from oxygen ion-conducting membranes coated with porous metals or mixed ionic and electronic conducting oxides. J Electrochem Soc 160(11):E148–E153CrossRefGoogle Scholar
  20. 20.
    Habib MA, Badr HM, Ahmed SF, Ben-Mansour R, Mazghani K, Imashuku GJ, Shao-Horn Y, Mancini N, Mitsos A, Kirchen P, Ghoneim A (2011) A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. Int J Energy Res 35(9):741–764CrossRefGoogle Scholar
  21. 21.
    Salehi M, Pfaff EM, Morkis Junior R, Bergmann CP, Diethelm S, Neururer C, Graule T, Grobety B, Clemens FJ (2013) Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) feedstock development and optimization for thermoplastic forming of thin planar and tubular oxygen separation membranes. J Membr Sci 443:237–245CrossRefGoogle Scholar
  22. 22.
    Nemitallah MA (2016) A study of methane oxy-combustion characteristics inside a modified design button-cell membrane reactor utilizing a modified oxygen permeation model for reacting flows. J Nat Gas Sci Eng 28:61–73CrossRefGoogle Scholar
  23. 23.
    Kirchen P, Apo DJ, Hunt A, Ghoniem AF (2013) A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions. Proc Combust Inst 34:3463–3470CrossRefGoogle Scholar
  24. 24.
    Hong J, Kirchen P, Ghoniem AF (2013) Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane. J Membr Sci 428:309–322CrossRefGoogle Scholar
  25. 25.
    Ben-Mansour R, Nemitallah MA, Habib MA (2013) Numerical investigation of oxygen permeation and methane oxy-combustion in a stagnation flow ion transport membrane reactor. Energy 54:322–332CrossRefGoogle Scholar
  26. 26.
    Ahmed P, Habib MA, Ben-Mansour R, Kirchen P, Ghoniem AF (2014) CFD (computational fluid dynamics) analysis of a novel reactor design using ion transport membranes for oxy-fuel combustion. Energy 77:932–944CrossRefGoogle Scholar
  27. 27.
    Wang H, Cong Y, Yang W (2002) Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen permeable membrane. J Membr Sci 210:259–271CrossRefGoogle Scholar
  28. 28.
    Kvamsdal HM, Jordal K, Bolland O (2007) A quantitative comparison of gas turbine cycles with CO2 capture. Energy 32:10–24CrossRefGoogle Scholar
  29. 29.
    Hashim SM, Mohamed A, Bhatia S (2010) Current status of ceramic-based membranes for oxygen separation from air. Adv Coll Interface Sci 160:88–100CrossRefGoogle Scholar
  30. 30.
    Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, Diniz da Costa JC (2008) Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membr Sci 320:13–41CrossRefGoogle Scholar
  31. 31.
    Shao ZP, Yang WS, Cong Y, Dong H, Tong JH, Xiong GX (2000) Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. J Membr Sci 172:177–188CrossRefGoogle Scholar
  32. 32.
    Kharton VV, Viskup AP, Kovalevsky AV, Naumovic EN, Marques FMB (2001) Ionic transport in oxygen-hyperstoichiometric phases with K2NiF4-type structure. Solid State Ionics 143:337–353CrossRefGoogle Scholar
  33. 33.
    Ting C, Hailei Z, Nansheng X, Yuan L, Xionggang LU, Weizhong D, Fushen L (2011) Synthesis and oxygen permeation properties of a Ce0.8Sm0.2O2−δ–LaBaCO2O5+δ. J Membr Sci 370:158–165CrossRefGoogle Scholar
  34. 34.
    Wiik K, Aasland S, Hansen HL, Tangen LL, Odegard R (2002) Oxygen permeation in the system SrFeO3−x–SrCoO3−y. Solid State Ionics 152–153:675–680CrossRefGoogle Scholar
  35. 35.
    Fan CG, Zuo YB, Li JT, Lu JQ, Chen CS, Bae DS (2007) Highly permeable La0.2Ba0.8Co0.8Fe0.2−xZrxO3−δ membranes for oxygen separation. Sep Purif Technol 55:35CrossRefGoogle Scholar
  36. 36.
    Ishihara T, Yamada T, Arikawa H, Nishiguchi H, Takita Y (2000) mixed electronic-oxide ionic conductivity and oxygen permeating property of Fe-, Co- or Ni-doped LaGaO3 provskite oxide. Solid State Ionics 135:631–636CrossRefGoogle Scholar
  37. 37.
    Habib MA, Badr HM, Ahmed SF, Ben-Mansour R, Mezghani K, Imashuku S, lao GJ, Shao-Horn Y, Mancini ND, Mitsos A, Kirchen P, Ghoniem AF (2011) A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. Int J Energy Res 35:741–764CrossRefGoogle Scholar
  38. 38.
    Manning PS, Sirman JD, Kilner JA (1996) Oxygen self-diffusion and surface exchange studies of oxide electrolytes having the fluorite structure. Solid State Ionics 93(1–2):125–132CrossRefGoogle Scholar
  39. 39.
    Ishihara T, Kilner JA, Honda M, Sakai N, Harumi Y, Yusaku T (1998) Oxygen surface exchange and diffusion in LaGaO3 based perovskite type oxides. Solid State Ionics 113–115:593–600CrossRefGoogle Scholar
  40. 40.
    Ruiz-Trejo E, Sirman JD, Baikov YM, Kilner JA (1998) Oxygen ion diffusivity surface exchange and ionic conductivity in single crystal gadolinia doped ceria. Solid State Ionics 113–115:565–569CrossRefGoogle Scholar
  41. 41.
    Lane JA, Kilner JA (2000) Oxygen surface exchange on gadolinia doped ceria. Solid State Ionics 136–137:927–932CrossRefGoogle Scholar
  42. 42.
    Tan X, Liu Y, Li K (2005) Mixed conducting ceramic hollow fibre membranes for air separation. AIChE J 71:1991CrossRefGoogle Scholar
  43. 43.
    Kim S, Yang YL, Jacobson AJ, Abeles B (1998) Diffusion and surface exchange coefficients in mixed ionic electronic conducting oxides from the pressure dependence of oxygen permeation. Solid State Ionics 106:189–195CrossRefGoogle Scholar
  44. 44.
    Lin YS, Wang Y, Han J (1994) Oxygen permeation through thin mixed-conducting solid oxide membranes. AIChE J 40:786–798CrossRefGoogle Scholar
  45. 45.
    Xu SJ, Thomson WJ (1999) Oxygen permeation rates through ion-conducting perovskite membranes. Chem Eng Sci 54(17):3839–3850CrossRefGoogle Scholar
  46. 46.
    Liu S, Tan X, Shao Z, Diniz da Costa J (2006) Ba0.5Sr0.5Co0.8Fe0.2O3−δ ceramic hollow-fiber membranes for oxygen permeation. AIChE J 52:3452CrossRefGoogle Scholar
  47. 47.
    Tan X, Li K (2002) Modeling of air separation in a LSCF hollow-fibre membrane module. AIChE J 48:1469CrossRefGoogle Scholar
  48. 48.
    Lee T, Yang Y, Jacobson A, Abelesa B, Zhou M (1997) Oxygen permeation in dense SrCo0.8Fe0.2O3−δ membranes: surface exchange kinetics versus bulk diffusion. Solid State Ionics 100:77–85CrossRefGoogle Scholar
  49. 49.
    Shao Z, Xiong G, Tong J, Dong H, Yang W (2001) Ba effect in doped Sr(Co0.8Fe0.2)O3−δ on the phase structure and oxygen permeation properties of the dense ceramic membranes. Sep Purif Technol 25:419–429CrossRefGoogle Scholar
  50. 50.
    Wang H, Wang R, Liang D, Yang W (2004) Experimental and modeling studies on Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) tubular membranes for air separation. J Membr Sci 243:405CrossRefGoogle Scholar
  51. 51.
    Ge L, Shao Z, Zhang K, Ran R, Diniz da Costa J, Liu S (2009) Evaluation of mixed-conducting lanthanum-strontium-cobaltite ceramic membrane for oxygen separation. AIChE J 55:2603CrossRefGoogle Scholar
  52. 52.
    Ito W, Nagai T, Sakon T (2007) Oxygen separation from compressed air using a mixed conducting perovskite-type oxide membrane. Solid State Ionics 178:809CrossRefGoogle Scholar
  53. 53.
    Zhu X, Sun S, Cong Y, Yang W (2009) Operation of perovskite membrane under vacuum and elevated pressures for high-purity oxygen production. J Membr Sci 345:47–52CrossRefGoogle Scholar
  54. 54.
    Zhu X, Cong Y, Yang W (2006) Oxygen permeability and structural stability of BaCe0.15Fe0.85O3−δ membranes. J Membr Sci 283:38–44CrossRefGoogle Scholar
  55. 55.
    Qi X, Lin Y, Swartz S (2000) Electrical transport and oxygen permeation properties of lanthanum cobaltite membranes synthesized by different methods. Ind Eng Chem Res 39:646CrossRefGoogle Scholar
  56. 56.
    Rui Z, Li Y, Lin Y (2009) Analysis of oxygen permeation through dense ceramic membranes with chemical reactions of finite rate. Chem Eng Sci 64:172–179CrossRefGoogle Scholar
  57. 57.
    Akin FT, Jerry LYS (2004) Oxygen permeation through oxygen ionic or mixed-conducting ceramic membranes with chemical reactions. J Membr Sci 231:133–146CrossRefGoogle Scholar
  58. 58.
    Chang X, Zhang C, He Y, Dong X, Jin W, Xu N (2009) A comparative study of the performance of symmetric and asymmetric mixed-conducting membranes. Chin J Chem Eng 17:562CrossRefGoogle Scholar
  59. 59.
    Akin F, Lin Y (2002) Oxidative coupling of methane in dense ceramic membrane reactor with high yields. AIChE J 48:2298–2306CrossRefGoogle Scholar
  60. 60.
    Akin FT, Lin YS (2002) Selective oxidation of ethane to ethylene in a dense tubular membrane reactor. J Membr Sci 209:457–467CrossRefGoogle Scholar
  61. 61.
    Bouwmeester HJM, Burggraaf AJ (1997) Dense ceramic membranes for oxygen separation. In: Gellings PJ, Bouwmeester HJM (eds) The CRC handbook of solid state electrochemistry. CRC Press, Boca Raton, FL Chapter 14CrossRefGoogle Scholar
  62. 62.
    Han J, Xomeritakis G, Lin YS (1997) Oxygen permeation through thin zirconia/yttria membranes prepared by EVD. Solid State Ionics 93:263–272CrossRefGoogle Scholar
  63. 63.
    Zeng Y, Lin YS (2000) Oxygen permeation and oxidative coupling of methane in yttria doped bismuth oxide membrane reactor. J Catal 193:58–64CrossRefGoogle Scholar
  64. 64.
    Park JH, Blumenthal RN (1989) Electronic transport in 8 mole percent Y2O3–ZrO2. J Electrochem Soc 136:2867CrossRefGoogle Scholar
  65. 65.
    Kusaba H, Shibata Y, Sasaki K, Teraoka Y (2006) Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskite-type oxide. Solid State Ionics 177:2249–2253CrossRefGoogle Scholar
  66. 66.
    Mancini ND, Mitsos A (2011) Ion transport membrane reactors for oxy-combustion part II: analysis and comparison of alternatives. Energy 36(8):4721–4739CrossRefGoogle Scholar
  67. 67.
    Chen L, Ghoniem AF (2012) Simulation of oxy-coal combustion in a 100 kWth test facility using RANS and LES: a validation study. Energy Fuels 26:4783–4798.  https://doi.org/10.1021/ef3006993CrossRefGoogle Scholar
  68. 68.
    Ben-Mansour R, Habib MA, Badr HM, Nemitallah MA (2012) Characteristics of oxyfuel combustion in an oxygen transport reactor. Energy Fuels 26:4599–4606.  https://doi.org/10.1021/ef300539cCrossRefGoogle Scholar
  69. 69.
    Nemitallah MA, Habib MA, Ben Mansour R (2012) Investigations of oxy-fuel combustion and oxygen permeation in an ITM reactor using a two-step oxy-combustion reaction kinetics model. J Membr Sci 432:1–12CrossRefGoogle Scholar
  70. 70.
    Nemitallah MA, Habib MA, Ben Mansour R, Ghoniem AF (2014) Design of an ion transport membrane reactor for gas turbine combustion application. J Membr Sci 450:60–71CrossRefGoogle Scholar
  71. 71.
    Mancini ND, Mitsos A (2011) Ion transport membrane reactors for oxy-combustion part II: analysis and comparison of alternatives. Energy 36:4721–4739CrossRefGoogle Scholar
  72. 72.
    Chandrasekhar S (1960) Radiative transfer. Dover Publications, New York, NYzbMATHGoogle Scholar
  73. 73.
    Rajhi MA, Ben-Mansour R, Habib MA, Nemitallah MA, Andersson K (2014) Evaluation of gas radiation models in CFD modeling of oxy-combustion. Energy Convers Manag 81:83–97CrossRefGoogle Scholar
  74. 74.
    Nemitallah MA, Habib MA (2013) Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor: oxy-combustion and emission characterization, flame stabilization and model validation. Appl Energy 11:401–415CrossRefGoogle Scholar
  75. 75.
    Lallemant N, Weber R (1996) A computationally efficient procedure for calculating gas radiative properties using the exponential wide band model. Int J Heat Mass Transfer 39:3273–3286CrossRefGoogle Scholar
  76. 76.
    Puig-Arnavat M, Søgaard M, Hjuler K, Ahrenfeldt J, Henriksen UB, Hendriksen PV (2015) Integration of oxygen membranes for oxygen production in cement plants. Energy 91:852–865CrossRefGoogle Scholar
  77. 77.
    Duan L, Yue L, Qu W, Yang Y (2015) Study on CO2 capture from molten carbonate fuel cell hybrid system integrated with oxygen ion transfer membrane. Energy 93:20–30CrossRefGoogle Scholar
  78. 78.
    Hwang KR, Park JW, Lee SW, Hong S, Lee C-B, Oh DK et al (2015) Catalytic combustion of the retentate gas from a CO2/H2 separation membrane reactor for further CO2 enrichment and energy recovery. Energy 90:1192–1198CrossRefGoogle Scholar
  79. 79.
    Chiesa P, Romano MC, Spallina V, Turi DM, Mancuso L (2013) Efficient low CO2 emissions power generation by mixed conducting membranes. Energy Procedia 37:905–913CrossRefGoogle Scholar
  80. 80.
    Manzolini G, Gazzani M, Turi DM, Macchi E (2013) Application of hydrogen selective membranes to IGCC. Energy Procedia 37:2274–2283CrossRefGoogle Scholar
  81. 81.
    Voleno A, Romano MC, Turi DM, Chiesa P, Ho MT, Wiley DE (2014) Post-combustion CO2 capture from natural gas combined cycles by solvent supported membranes. Energy Procedia 63:7389–7397CrossRefGoogle Scholar
  82. 82.
    Romano MC (2013) Ultra-high CO2 capture efficiency in CFB oxyfuel power plants by calcium looping process for CO2 recovery from purification units vent gas. Int J Greenh Gas Control 18:57–67CrossRefGoogle Scholar
  83. 83.
    Mancini ND, Mitsos A (2011) Ion transport membrane reactors for oxy-combustion part II: analysis and comparison of alternatives. Energy 36:4721e39Google Scholar
  84. 84.
    Habib MA, Nemitallah MA (2015) Design of an ion transport membrane reactor for application in fire tube boilers. Energy 81:787–801CrossRefGoogle Scholar
  85. 85.
    Nemitallah MA, Habib MA, Badr HM (2017) Design of a multi-can carbon-free gas turbine combustor utilizing multiple shell-and-tube OTRs for ZEPP applications. J Nat Gas Sci Eng 46:172–187CrossRefGoogle Scholar
  86. 86.
    Petric A, Huang P, Tietz F (2000) Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics 135:719–725CrossRefGoogle Scholar
  87. 87.
    Li S, Jin W, Xu N, Shi J (1999) Synthesis and oxygen permeation properties of La0.2Sr0.8Co0.2Fe0.8O3−δ membranes. Solid State Ionics 124:161–170CrossRefGoogle Scholar
  88. 88.
    Hong J, Kirchen P, Ghoniem AF (2012) Numerical simulation of ion transport membrane reactors: oxygen permeation and transport and fuel conversion. J Membr Sci 85:407–408Google Scholar
  89. 89.
    Behrouzifar A, Atabak AA, Mohammadi T, Pak A (2012) Experimental investigation and mathematical modeling of oxygen permeation through dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) perovskite-type ceramic membranes. Ceram Int 38:4797–4811CrossRefGoogle Scholar
  90. 90.
    Chui E, Raithby G (1993) Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method. Numer Heat Transfer 23(3):269–288CrossRefGoogle Scholar
  91. 91.
    Glarborg P, Bentzen LL (2007) Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy Fuels 22:291–296CrossRefGoogle Scholar
  92. 92.
    Andersen J, Rasmussen CL, Giselsson T, Glarborg P (2009) Global combustion mechanisms for use in CFD modeling under oxy-fuel conditions. Energy Fuels 23:1379–1389CrossRefGoogle Scholar
  93. 93.
    Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics—the finite volume method. Longman Scientific and TechnicalGoogle Scholar
  94. 94.
    Nemitallah MA, Habib MA, Ben Mansour R (2013) Investigations of an ion transport membrane reactor specially designed for a power cycle. Appl Mech Mater 302:440–446CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Medhat A. Nemitallah
    • 1
    Email author
  • Mohamed A. Habib
    • 2
  • Hassan M. Badr
    • 3
  1. 1.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  3. 3.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations