Advertisement

Modeling of Combustion in Gas Turbines

  • Medhat A. NemitallahEmail author
  • Mohamed A. Habib
  • Hassan M. Badr
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

In order to develop high efficiency, low emission, and compact combustors for different applications (such as large-scale gas turbine systems, automotive and aero-engines) capable of stable operation over a wide range of operating conditions, fundamental mechanisms controlling combustion behavior in such systems must be elucidated.

References

  1. 1.
    Huang Y, Yang V (2009) Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog Energy Combust Sci 35:293–364CrossRefGoogle Scholar
  2. 2.
    Kashir B, Tabejamaat S, Jalalatian N (2015) A numerical study on combustion characteristics of blended methane-hydrogen bluff-body stabilized swirl diffusion flames. Int J Hydrogen Energy 40:6243–6258 CrossRefGoogle Scholar
  3. 3.
    Habib MA, Nemitallah MA, Ahmed P, Sharqawy MH, Badr HM, Muhammad I, Yaqub M (2015) Experimental analysis of oxygen-methane combustion inside a gas turbine reactor under various operating conditions. Energy 86:105–114CrossRefGoogle Scholar
  4. 4.
    Yu B, Lee S, Lee CE (2015) Study of NOx emission characteristics in CH4/air non-premixed flames with exhaust gas recirculation. Energy 91:119–127CrossRefGoogle Scholar
  5. 5.
    Gao X, Duan F, Lim SC, Yip MS (2013) NOx formation in hydrogen–methane turbulent diffusion flame under the moderate or intense low-oxygen dilution conditions. Energy 59:559–569CrossRefGoogle Scholar
  6. 6.
    Li YH, Chen GB, Lin YC, Chao YC (2015) Effects of flue gas recirculation on the premixed oxy-methane flames in atmospheric condition. Energy 89:845–857CrossRefGoogle Scholar
  7. 7.
    Stone C, Menon S (2002) Swirl control of combustion instabilities in a gas turbine combustor. Proc Combust Inst 29(1):155–160CrossRefGoogle Scholar
  8. 8.
    Schluter J (2004) Static control of combustion oscillations by coaxial flows: a large eddy simulation investigation. J Propuls Power 20(3):460–467CrossRefGoogle Scholar
  9. 9.
    Franzelli B, Riber E, Gicquel L, Poinsot T (2012) Large eddy simulation of combustion instabilities in a lean partially premixed swirl flame. Combust Flame 159:621–637CrossRefGoogle Scholar
  10. 10.
    Roux S, Lartique G, Poinsot T, Meier U, Berat C (2005) Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations. Combust Flame 141(1–2):40–54CrossRefGoogle Scholar
  11. 11.
    Huang Y, Sung H-G, Hsieh S-H, Yang V (2003) Large eddy simulation of combustion dynamics of lean premixed swirl stabilized combustor. J Propul Power 19(5):782–794CrossRefGoogle Scholar
  12. 12.
    Angelberger C, Veynante D, Egolfopoulos F, Poinsot T (1998) Large eddy simulations of combustion instabilities in premixed flames. In: Proceedings of the summer program, Center for Turbulence ResearchGoogle Scholar
  13. 13.
    Fureby C (2012) A comparative study of flamelet and finite rate chemistry LES for a swirl stabilized flame. J Eng Gas Turbines Power 134(4)CrossRefGoogle Scholar
  14. 14.
    Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics: The finite volume method. Longman Scientific and TechnicalGoogle Scholar
  15. 15.
    Fluent 6.2 User’s Guide. Fluent Inc. (2003) Center Research Park, 10 CavendishCourt, Lebanon, NH 03766, USAGoogle Scholar
  16. 16.
    ANSYS (2013) ANSYS fluent theory guide, vol 15, Nov 2013Google Scholar
  17. 17.
    Wilcox DC (2000) Turbulence modeling for CFD. DCW IndustriesGoogle Scholar
  18. 18.
    Chen L, Ghoniem AF (2012) Simulation of oxy-coal combustion in a 100 kWth test facility using RANS and LES: a validation study. Energy Fuels 26:4783–4798CrossRefGoogle Scholar
  19. 19.
    Garnier E, Adams N, Sagaut P (2009) Large eddy simulation for compressible flows. SpringerGoogle Scholar
  20. 20.
    Perez FEH (2011) Sub-filter scale modeling for large eddy simulation of lean hydrogen-enriched turbulent premixed combustion. Ph.D. thesis, University of TorontoGoogle Scholar
  21. 21.
    Echekki T (2011) Turbulent combustion modeling: advances, new trends and perspectives. Springer, BerlinCrossRefGoogle Scholar
  22. 22.
    Lin W (2010) Large-eddy simulation of premixed turbulent combustion using flame surface density approach”, Ph.D. Thesis, University of TorontoGoogle Scholar
  23. 23.
    Weller HG, Tabor G, Gosman AD, Fureby C (1998) Application of a flame wrinkling LES combustion model to a turbulent mixing layer. In: 27th symposium on combustion. The Combustion Institute, pp 899–907Google Scholar
  24. 24.
    Pitsch H (2002) LES of premixed turbulent combustion using a level-set approach. In: Proceedings of Combustion Institute, vol 29, pp 2001–2008Google Scholar
  25. 25.
    Candel S, Poinsot T (1990) Flame stretch and the balance equation for the flame area. Combust Sci Technol 3:1–15CrossRefGoogle Scholar
  26. 26.
    Durand L (2007) Development, implementation and validation of LES models for inhomogeneously premixed turbulent combustion. Ph.D. thesis, Technical University of MunichGoogle Scholar
  27. 27.
    Wang P (2005) Large eddy simulation of turbulent swirling flows and turbulent premixed combustion. Ph.D. thesis, Lund Institute of TechnologyGoogle Scholar
  28. 28.
    Baudoin E (2010) Large eddy simulation of turbulent premixed and partially premixed combustion. Ph.D. thesis, Lund Institute of TechnologyGoogle Scholar
  29. 29.
    Colin O, Ducros F, Veynante D, Poinsot T (2000) A thickened flame model for large eddy simulation of turbulent premixed combustion. Phys Fluids 12(7):1843–1863CrossRefGoogle Scholar
  30. 30.
    Charlette F, Meneveau C, Veynante D (2002) A power-law flame wrinkling model for les of premixed turbulent combustion Part I: non-dynamic formulation and initial tests. Combust Flame 131:159–180CrossRefGoogle Scholar
  31. 31.
    Charlette F, Meneveau C, Veynante D (2002) A power-law flame wrinkling model for LES of premixed turbulent combustion part ii: dynamic formulation. Combust Flame 131:181–197CrossRefGoogle Scholar
  32. 32.
    Karlsson A, Chomiak J (1996) Flame liftoff in diesel sprays. In: 26th symposium on combustion, pp 2557–2564Google Scholar
  33. 33.
    Norsin PAN (2000) Complex chemistry modeling of diesel spray combustion. Ph.D. thesis, Imperial College of Science, Technology and MedicineGoogle Scholar
  34. 34.
    Jones WP, Lindstedt RP (1988) Global reaction schemes for hydrocarbon combustion. Combust Flame 73(3):233–249CrossRefGoogle Scholar
  35. 35.
    Vaos EM, Lindstedt RP (2006) Transported PDF modeling of high-Reynolds-number premixed turbulent flames. Combust Flame 145:495–511CrossRefGoogle Scholar
  36. 36.
    Roux S, Lartigue G, Poinsot T, Meier U, Bérat C (2005) Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations. Combust Flame 141:40–54CrossRefGoogle Scholar
  37. 37.
    Selle L, lartigue G, Poinsot T, Kaufmann P, Krebs W, Veynante D (2002) Large eddy simulation of turbulent combustion for gas turbines with reduced chemistry. In: Proceedings of summer program 2002, Center for Turbulence ResearchGoogle Scholar
  38. 38.
    Durand L, Polifke W (2007) Implementation of the thickened flame model for large eddy simulation of turbulent premixed combustion in a commercial solver. ASME Paper No. GT2007–28188Google Scholar
  39. 39.
    Polifke W, Hirsch C, Zellhuber M, Komarek T, Chong L (20069) Influence of strain and heat loss on flame stabilization in a non-adiabatic combustor. In: Proceedings of the European combustion meetingGoogle Scholar
  40. 40.
    Steinberg AM, Driscoll JF (2009) Straining and wrinkling processes during turbulence-premixed flame interaction measured using temporally-resolved diagnostics. Combust Flame 156(12):2285–2306CrossRefGoogle Scholar
  41. 41.
    Viskanta R (2005) Radiative transfer in combustion systems: fundamentals & applications. Purdue University, USAGoogle Scholar
  42. 42.
    Chandrasekhar S (1960) Radiative transfer. Dover Publications, New YorkzbMATHGoogle Scholar
  43. 43.
    Modest MF, Zhang H (2000) The full-spectrum correlated-k distribution and its relationship to the weighted-sum-of gray-gas method. In: Proceedings of the 2000 IMECE, vol HTD-366–1. ASME, Orlando, pp 75–84Google Scholar
  44. 44.
    Lallemant N, Weber R (1996) A computationally efficient procedure for calculating gas radiative properties using the exponential wide band model. Int J Heat Mass Transfer 39:3273–3286CrossRefGoogle Scholar
  45. 45.
    Siegel R, Howell J (2002) Thermal radiation heat transfer, 4th edn. Taylor and Francis, New YorkGoogle Scholar
  46. 46.
    Modak AT (1979) Radiation from products of combustion. Fire Res 1:339–361Google Scholar
  47. 47.
    Leckner B (1972) Spectral and total emissivity of water vapor and carbon dioxide. Combust Flame 19:33–48CrossRefGoogle Scholar
  48. 48.
    Hottel HC, Noble JJ, Sarofim AF (2007) Heat and mass transfer (Chap. 5). In: Perry’s chemical engineers’ handbook, 8th edn. McGraw-Hill, New YorkGoogle Scholar
  49. 49.
    Hottel H, Sarofim A (1967) Radiative transfer. McGraw-Hill Inc., New YorkGoogle Scholar
  50. 50.
    Grosshandler WL (1993) RADCAL: a narrow-band model for radiation calculations in a combustion environment 1993. NIST Technical Note 1402Google Scholar
  51. 51.
    Truelove JS (1976) A mixed grey gas model for flame radiation. United Kingdom Atomic Energy Authority Report AERER-8494, HarwellGoogle Scholar
  52. 52.
    Johansson R, Andersson K, Leckner B, Thunman H (2010) Models for gaseous radiative heat transfer applied to oxy-fuel conditions in boilers. Int J Heat Mass Transf 53:220–230CrossRefGoogle Scholar
  53. 53.
    Magnussen BF, Hjertager BH (1976) On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. In: 16th Symposium (Int’l) on combustion, The Combustion InstituteGoogle Scholar
  54. 54.
    Echekki T, Mastorakos E (2011) Turbulent combustion modeling: advances, new trends and perspectives. Springer, BerlinCrossRefGoogle Scholar
  55. 55.
    Brink A, Mueller C, Kilpinen P, Hupa M (2000) Possibilities and limitations of the eddy break-up model. Combust Flame 123:275–279CrossRefGoogle Scholar
  56. 56.
    Saario A, Oksanen A (2008) Comparison of global ammonia chemistry mechanisms in biomass combustion and selective noncatalytic reduction process conditions. Energy Fuels 22:297–305CrossRefGoogle Scholar
  57. 57.
    Glarborg P, Bentzen LL (2007) Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy Fuels 22:291–296CrossRefGoogle Scholar
  58. 58.
    Westbrook CK, Dryer FL (1981) Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust Sci Technol 27:31–43CrossRefGoogle Scholar
  59. 59.
    Andersen J, Rasmussen CL, Giselsson T, Glarborg P (2009) Global combustion mechanisms for use in CFD modeling under oxy-fuel conditions. Energy Fuels 23:1379–1389CrossRefGoogle Scholar
  60. 60.
    Ilbas M, Yilmaz I, Veziroglu T, Kaplan Y (2005) Hydrogen as burner fuel: modelling of hydrogen-hydrocarbon composite fuel combustion and NOx formation in a small burner. Int J Energy Res 29:973–990CrossRefGoogle Scholar
  61. 61.
    De A, Acharya S (2012) Parametric study of upstream flame propagation in hydrogen-enriched premixed combustion: effects of swirl, geometry and premixedness. Int J Hydrogen Energy 37:14649–14668CrossRefGoogle Scholar
  62. 62.
    De A, Acharya S (2012) Dynamics of upstream flame propagation in a hydrogen-enriched premixed flam. Int J Hydrogen Energy 37:17294–17309CrossRefGoogle Scholar
  63. 63.
    Marinov N, Westbrook C, Pitz W (1996) Transport phenomena in combustion. In: Eighth international symposium on transport processes, vol 8, pp 118–141Google Scholar
  64. 64.
    Frassoldati A, Cuoci A, Faravelli T (2009) Simplified kinetic schemes for oxy-fuel combustion. Sustain Foss 1–14Google Scholar
  65. 65.
    Aliyu M, Nemitallah MA, Said SA, Habib MA (2016) Characteristics of H2-enriched CH4–O2 diffusion flames in a swirl-stabilized gas turbine combustor: experimental and numerical study. Int J Hydrogen Energy 41(44):20418–20432CrossRefGoogle Scholar
  66. 66.
    Nemitallah M, Habib M (2013) Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor. Appl Energy 111:401–415CrossRefGoogle Scholar
  67. 67.
    Linck M, Gupta A, Bourhis G, Yu K (2006) Combustion characteristics of pressurized swirling spray flame and unsteady two-phase exhaust jet. In: American Institute of aeronautics and astronautics, Jan 2006, pp 1–15Google Scholar
  68. 68.
    Nemitallah Medhat A, Kewlani Gaurav, Hong Seunghyuck, Shanbhogue Santosh J, Habib Mohamed A, Ghoniem Ahmed F (2016) Investigation of a turbulent premixed combustion flame in a backward-facing step combustor; effect of equivalence ratio. Energy 95:211–222CrossRefGoogle Scholar
  69. 69.
    Altay HM, Speth RL, Hudgins DE, Ghoniem AF (2009) Flame-vortex interaction driven combustion dynamics in a backward-facing step combustor. Combust Flame 156:1111–1125CrossRefGoogle Scholar
  70. 70.
    Hong S, Shanbhogue SJ, Ghoniem AF (2015) Impact of fuel composition on the recirculation zone structure and its role in lean premixed flame anchoring. Proc Combust Inst 35:1493–1500CrossRefGoogle Scholar
  71. 71.
    Pope SB (2000) Turbulent flows. Cambridge University PressGoogle Scholar
  72. 72.
    Jones WP, Lindstedt RP (1988) Global reaction schemes for hydrocarbon combustion. Combust Flame 73:233–249CrossRefGoogle Scholar
  73. 73.
    Hong S, Speth RL, Shanbhogue SJ, Ghoniem AF (2013) Examining flow-flame interaction and the characteristic stretch rate in vortex-driven combustion dynamics using PIV and numerical simulation. Combust Flame 160:1381–1397CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Medhat A. Nemitallah
    • 1
    Email author
  • Mohamed A. Habib
    • 2
  • Hassan M. Badr
    • 3
  1. 1.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  3. 3.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations