Advertisement

Application of Oxy-fuel Combustion Technology into Conventional Combustors

  • Medhat A. NemitallahEmail author
  • Mohamed A. Habib
  • Hassan M. Badr
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Nowadays, emission of greenhouse gases (mainly CO2) is a critical challenge facing the world due to the associated global warming. By the year 2050, the emission levels of CO2 are expected to be increased by about 70% compared to the present levels (Lupion et al. in Energy Procedia 4:5639–5646, [1]). The huge world’s energy demand forces the governments to continue using fossil fuels and the researchers to continue developing new technologies that can reduce the emissions of greenhouse gases while burning fossil fuels (Amponsah et al. in Renew Sustain Energy Rev 39:461–475, [2]).

References

  1. 1.
    Lupion M, Diego R, Loubeau L, Navarrete B (2011) CIUDEN CCS project: status of the CO2 capture technology development plant in power generation. Energy Procedia 4:5639–5646CrossRefGoogle Scholar
  2. 2.
    Amponsah NY, Troldborg M, Kington B, Aalders I, Hough RL (2014) Greenhouse gas emissions from renewable energy sources: a review of lifecycle considerations. Renew Sustain Energy Rev 39:461–475CrossRefGoogle Scholar
  3. 3.
    Habib MA, Nemitallah MA (2015) Design of an ion transport membrane reactor for application in fire tube boilers. Energy 81:787–801CrossRefGoogle Scholar
  4. 4.
    Gonzalez-Salazar MA (2015) Recent developments in carbon dioxide capture technologies for gas turbine power generation. Int J Greenhouse Gas Control 34:106–116CrossRefGoogle Scholar
  5. 5.
    Habib MA, Nemitalah MA, Ben-Mansour R (2013) Recent development in oxy-combustion technology and its applications to gas turbine combustors and ITM reactors. Energy Fuels 27:2–19CrossRefGoogle Scholar
  6. 6.
    Guo J, Liu Z, Wang P, Huang X, Li J, Xu P, Zheng C (2015) Numerical investigation on oxy-combustion characteristics of a 200 MWe tangentially fired boiler. Fuel 140:660–668CrossRefGoogle Scholar
  7. 7.
    Nemitallah MA, Habib MA (2013) Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor. Appl Energy 111:401–415CrossRefGoogle Scholar
  8. 8.
    Nemitallah MA, Habib MA, Ben-mansour R, Ghoniem AF (2014) Design of an ion transport membrane reactor for gas turbine combustion application. J Membr Sci 450:60–71CrossRefGoogle Scholar
  9. 9.
    Haslbeck J, Capicotto P, Juehn N, Lewis E, Rutkowski M, Woods M et al (2007) Bituminous coal to electricity. Washington D.C. (1:DOE/NETL-1291)Google Scholar
  10. 10.
    Ahmed P, Habib MA, Ben-Mansour R, Kirchen P, Ghoniem AF (2014) CFD (computational fluid dynamics) analysis of a novel reactor design using ion transport membranes for oxy-fuel combustion. Energy 77:932–944CrossRefGoogle Scholar
  11. 11.
    Balachandran U, Kleefisch MS, Kobylinski TP, Morissette SL, Pei S (1997) Oxygen ion-conducting dense ceramic membranes. US patent 5:639-437Google Scholar
  12. 12.
    Schwartz M, White JH, Sammels AF (2000) Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them. US patent 6:033-632Google Scholar
  13. 13.
    Chen CC, Prasad R, Gottzmann CF (1999) Solid electrolyte membrane with porous catalytically-enhancing constituents (assigned to praxair technology). US patent 5:938-822Google Scholar
  14. 14.
    Kim J, Lin YS (2000) Synthesis and oxygen permeation properties of thin YSZ/Pd composite membranes. AIChE J 46:1521CrossRefGoogle Scholar
  15. 15.
    Vijaykant S, Agrawal AK (2007) Liquid fuel combustion within silicon-carbide coated carbon foam. Exp Therm Fluid Sci 32:117–125CrossRefGoogle Scholar
  16. 16.
    Wang H, Luo K, Fan J (2014) Effects of turbulent intensity and droplet diameter on spray combustion using direct numerical simulation. Fuel 121:311–318CrossRefGoogle Scholar
  17. 17.
    Moriai H, Kurose R, Watanabe H, Yano Y, Akamatsu F, Komori S (2013) Large-eddy simulation of turbulent spray combustion in a subscale aircraft jet engine combustor-predictions of NO and soot concentrations. J Eng Gas Turbines Power 135:091503CrossRefGoogle Scholar
  18. 18.
    Yin C (2015) Modeling of heating and evaporation of n-heptane droplets: towards a generic model for fuel droplet/particle conversion. Fuel 141:64–73CrossRefGoogle Scholar
  19. 19.
    Kitano T, Nishio J, Kurose R, Komori S (2014) Evaporation and combustion of multicomponent fuel droplets. Fuel 136:219–225CrossRefGoogle Scholar
  20. 20.
    Jiang L, Agrawal AK, Taylor RP (2014) Clean combustion of different liquid fuels using a novel injector. Exp Therm Fluid Sci 57:275–284CrossRefGoogle Scholar
  21. 21.
    Park SH, Yoon SH (2015) Injection strategy for simultaneous reduction of NOx and soot emissions using two-stage injection in DME fueled engine. Appl Energy 143:262–270CrossRefGoogle Scholar
  22. 22.
    Speth RL, Rojo C, Malina R, Barrett SRH (2015) Black carbon emissions reductions from combustion of alternative jet fuels. Atmos Environ 105:37–42CrossRefGoogle Scholar
  23. 23.
    Choi SK, Choi BC, Lee SM, Choi JH (2015) The effect of liquid fuel doping on PAH and soot formation in counter flow ethylene diffusion flames. Exp Therm Fluid Sci 60:123–131CrossRefGoogle Scholar
  24. 24.
    Wall TF (2007) Combustion processes for carbon capture. Proc Combust Inst 31:31–47CrossRefGoogle Scholar
  25. 25.
    Khare S, Wall TF, Gupta RP, Elliott L, Buhre B (2005) Oxy-fuel (O2/CO2, O2/RFG) technology for sequestration-ready CO2 and emission compliance. The Clearwater coal conference: the 30th international technical conference on coal utilisation & fuel systems, coal technology: yesterday-today-tomorrow, Clearwater, USA, April 17–21Google Scholar
  26. 26.
    Croiset E, Thambimuthu KV (2007) NOx and SO2 emissions from O2/CO2 recycle coal combustion. Fuel 80:2117–2121CrossRefGoogle Scholar
  27. 27.
    Rohan S, Wall T (2011) Sulphur impacts during pulverised coal combustion in oxy-fuel technology for carbon capture and storage. Prog Energy Combust Sci 37:69–88Google Scholar
  28. 28.
    Zhu DL, Egolfopoulos FN, Law CK (1998) Propagation and extinction of stretched premixed flames. Symp (Int) Combust 21(1):1419–1426Google Scholar
  29. 29.
    Liu F, Guo H, Smallwood G (2003) The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames. J Combust Flame 133(4):495–497CrossRefGoogle Scholar
  30. 30.
    Andersson K, Johnsson F (2007) Flame and radiation characteristics of gas-fired O2/CO2 combustion. Fuel 86:656–668CrossRefGoogle Scholar
  31. 31.
    Croiset E, Thambimuthu KV (2007) NOx and SO2 emissions from O2/CO2 recycle coal combustio. Fuel 80:2117–2121CrossRefGoogle Scholar
  32. 32.
    Jyh-Cherng C, Zhen-Shu L, Jian-Sheng H (2007) Emission characteristics of coal combustion in different O2/N2, O2/CO2 and O2/RFG atmosphere. J Hazard Mater 142:266–271CrossRefGoogle Scholar
  33. 33.
    Kimura K, Omata K, Kiga T, Takano S, Shikisima S (1995) Characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery. Energy Convers Manag 36:805–808CrossRefGoogle Scholar
  34. 34.
    Okazaki K, Ando T (1997) NOx reduction mechanism in coal combustion with recycled CO2. Energy 22:207–215CrossRefGoogle Scholar
  35. 35.
    Hu Y, Naito S, Kobayashi N, Hasatani M (2000) CO2, NOx and SO2 emissions from the combustion of coal with high oxygen concentration gases. Fuel 79:1925–1932 CrossRefGoogle Scholar
  36. 36.
    Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF (2005) Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci 31:283–307CrossRefGoogle Scholar
  37. 37.
    Seepana S, Jayanti S (2008) In: ASME international mechanical engineering congress and exposition, Boston, MA, pp 435–444Google Scholar
  38. 38.
    Seepana S, Jayanti S (2010) Steam-moderated oxy-fuel combustion. Energy Convers Manag 51:1981–1988CrossRefGoogle Scholar
  39. 39.
    Hong J, Chaudhry G, Brisson J, Field R, Gazzino M, Ghoniem A (2009) Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor. Energy 34:1332–1340CrossRefGoogle Scholar
  40. 40.
    Andersen R, MacAdam S, Viteri F, Davies D, Downs J, Paliszewski A (2008) Adapting gas turbines to zero emission oxy-fuel power plants. ASME turbo expo 2008: power for land, sea, and air. Volume 2: controls, diagnostics and instrumentation; cycle innovations; electric power, Berlin, Germany, June 9–13, 2008. Paper No. GT2008-51377, 781–791; https://doi.org/10.1115/GT2008-51377
  41. 41.
    Zheng L, Pomalis R, Clements B, Herage T (2010) In: The 35th international technical conference on clean coal & fuel systems, June 6–10, Clearwater, Florida, USAGoogle Scholar
  42. 42.
    Fassbender A, Henry R, Tao L (2009) AEA report, AEA grant number—AEA 07-014Google Scholar
  43. 43.
    Hong J (2009) Ph.D. Thesis, Mechanical Engineering Department, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  44. 44.
    Hong J, Field R, Gazzino M, Ghoniem A (2010) Operating pressure dependence of the pressurized oxy-fuel combustion power cycle. Energy 35:5391–5399CrossRefGoogle Scholar
  45. 45.
    Yang T, Hunt P, Lisauskas R, Ballas E, Vitalis B (2010) In: The 35th international technical conference on clean coal & fuel systems, June 6–10, Clearwater, Florida, USAGoogle Scholar
  46. 46.
    Toftegaard M, Brix J, Jensen P, Glarborg P, Jensen A (2010) Oxy-fuel combustion of solid fuels. Prog Energy Combust Sci 36:581–625CrossRefGoogle Scholar
  47. 47.
    Chen L, Zheng S, Yong, Ghoniem A (2012) Modeling the slag behavior in three dimensional CFD simulation of a vertically-oriented oxy-coal combuston. Prog Energy Combust Sci 38:156–214Google Scholar
  48. 48.
    Haslbeck J, Capicotto P, Juehn N, Lewis E, Rutkowski M, Woods M et al (2010) Bituminous coal to electricity, vol. 1. Washington D.C. (DOE/NETL-1291)Google Scholar
  49. 49.
    BERR, AEA Energy & Environment (2007) Coal R309 BERR/Pub URN 07/1251Google Scholar
  50. 50.
    Darde A, Prabhakar R, Tranier JP, Perrin N (2009) Air separation and flue gas compression and purification units for oxy-coal combustion systems. Energy Procedia 1(1):527–534 CrossRefGoogle Scholar
  51. 51.
    Andersson K, Johnsson F (2006) Process evaluation of an 865 MWe lignite fired O2/CO2 power plant. Energy Convers Manag 47:3487–3498Google Scholar
  52. 52.
    Okawa M, Kimura N, Kiga T, Takano S, Arai K, Kato M (1997) Trial design for a CO2 recovery power plant by burning pulverized coal in O2/CO2. Energy Convers Manag 38:S123–S127Google Scholar
  53. 53.
    Varagani R, Chatel F, Pranda P, Rostam M, Lu Y, Bose A (2005) Performance simulation and cost assessment of oxy-combustion process for CO2 capture from coal-fired power plants. In: The 4th annual conference on carbon sequestration, May 2–5, Alexandria, VAGoogle Scholar
  54. 54.
    Torp TA, Gale J (2004) Demostrating storage of CO2 in geological reservoirs: the Sleipner and SACS projects. Energy 29(1361):1369Google Scholar
  55. 55.
    Emberly S, Hutcheon I, Shevalier M, Durocher K, Gunter WD, Perkins EH (2004) Geochemical monitoring of fluid-rock interaction and CO2 storage at the Weyburn CO2-injection enhanced oil recovery site. Energy 29(1393):1401Google Scholar
  56. 56.
    Pfaff I, Kather A (2009) Comparative thermodynamic analysis and integration issues of CCS steam power plants based on oxy-combustion with cryogenic or membrane based air separation. Energy Procedia 1:495–502CrossRefGoogle Scholar
  57. 57.
    Dyer PN, Richards RE, Russek SL, Taylor DM (2000) Ion transport membrane technology for oxygen separation and syngas production. Solid State Ionics 134:21CrossRefGoogle Scholar
  58. 58.
    Lin YS (2001) Microporous and dense inorganic membranes: current status and prospective. Sep Purif Technol 25:39–55CrossRefGoogle Scholar
  59. 59.
    Li K (2007) Ceramic membranes for separation and reaction. Wiley, West SussexCrossRefGoogle Scholar
  60. 60.
    Sirman J (2006) Chap 6. In: Nonporous inorganic membranes. Wiley-VCH Verlag GmbH & Co.KG, Weinheim, pp 165–184CrossRefGoogle Scholar
  61. 61.
    Kvamsdal HM, Jordal K, Bolland O (2007) A quantitative comparison of gas turbine cycles with CO2 capture. Energy 32:10–24CrossRefGoogle Scholar
  62. 62.
    Bolland O, Mathieu P (1998) Comparison of two CO2 removal options in combined cycle power plants. Energy Convers Manag 39(16–18):1653–1663CrossRefGoogle Scholar
  63. 63.
    Dillon DJ, Panesar RS, Wall RA, Allam RJ, White V, Gibbins J et al (2004) Oxy-combustion processes for CO2 capture from advanced supercritical PF and NGCC power plant. In: Proceedings of the seventh international conference on greenhouse gas control technologies—GHGT7, Vancouver, Canada, Sept 2004Google Scholar
  64. 64.
    Staicovici MD (2002) Further research zero CO2 emission power production: the COOLENERG process. Energy 27:831–844CrossRefGoogle Scholar
  65. 65.
    Yantovski EI (1996) Stack downward zero emission fuel-fired power plants concept. Energy Convers Manage 37:867–877CrossRefGoogle Scholar
  66. 66.
    Mathieu P, Nihart R (1999) Sensitivity analysis of the MATIANT cycle. Energy Convers Manag 40:1687–1700CrossRefGoogle Scholar
  67. 67.
    The European Technology Platform for Zero Emission Fossil Fuel Power Plants (ZEP) (2006) The final report from working group 1 power plant and carbon dioxide capture, 13 Oct 2006Google Scholar
  68. 68.
    Sanz W, Jericha H, Bauer B, Göttlich E (2007) Qualitative and quantitative comparison of two promising oxy-fuel power cycles for CO2 capture. Paper GT2007-27375, ASME turbo expo, Montreal, CanadaGoogle Scholar
  69. 69.
    Jericha H, Sanz W, Göttlich E (2006) Design concept for large output Graz cycle gas turbines. ASME paper GT2006-90032, ASME turbo expo 2006, Barcelona, SpainGoogle Scholar
  70. 70.
    Anderson RE, MacAdam S, Viteri F, Davies DO, Downs JP, Paliszewski A (2008) Adapting gas turbines to zero emission oxy-fuel power plants. Paper GT 2008-51377, ASME turbo expo, Berlin, GermanyGoogle Scholar
  71. 71.
    Li H., Yan J., Yan J., Anheden M., Impurity impacts on the purification process on oxy-fuel combustion based CO2 capture and storage system, Appl Energy 2009;86:202–13.CrossRefGoogle Scholar
  72. 72.
    Jericha H, Göttlich E (2002) Conceptual design for an industrial prototype Graz cycle power plant. Paper GT 2002-30118, ASME turbo expo, Amsterdam, NetherlandsGoogle Scholar
  73. 73.
    Woycenko D, van de Kamp W, Roberts P (1997) European Commission Joule II clean coal technology program 1992–1995, vol II. Powder coal combustion projects final reports. ISBN:92-9-828-006-7Google Scholar
  74. 74.
    Heil P, Torporov D, Stadler H, Tschunko S, Forster M, Kneer R (2009) Development of an oxycoal swirl burner operating at low O2 concentrations. Fuel 88:1269–1274CrossRefGoogle Scholar
  75. 75.
    Kutne P, Kapadia BK, Meier W, Aigner M (2010) Experimental analysis of the combustion behavior of oxyfuel flames in a gas turbine model combustor. Proc Combust Inst  https://doi.org/10.1016/j.proci.2010.07.008CrossRefGoogle Scholar
  76. 76.
    Kutne P, Kapadia BK, Meier W, Aigner M (2011) Experimental analysis of the combustion behavior of oxyfuel flames in a gas turbine model combustor. Proc Combust Inst 33(2):3383–3390CrossRefGoogle Scholar
  77. 77.
    Cao M, Eickhoff H, Joos F, Simon B (1987) In: ASME propulsion and energetics, 70th symposium, AGARD conference proceedings 422, 8.1Google Scholar
  78. 78.
    Liu C, Chen G, Sipöcz N, Assadi M, Bai X (2012) Characteristics of oxy-fuel combustion in gas turbines. Appl Energy 89:387–394CrossRefGoogle Scholar
  79. 79.
    Gupta A, Lilley D, Syred N (1984) Swirl flows. Abacus Press, KentGoogle Scholar
  80. 80.
    Syred N, Chigier NA, Beér JM (1971) Flame stabilization in recirculation zones of jets with swirl. In: Thirteenth symposium on combustion, University of Utah, Salt Lake City, 1970. Thirteenth Int Symp Combust Combust Inst 13:617–624CrossRefGoogle Scholar
  81. 81.
    Syred N, Beér JM (1974) Combustion in swirling flows: a review. Combust Flame 23:143–201CrossRefGoogle Scholar
  82. 82.
    Weber R, Dugué J (1992) Combustion accelerated swirling flows in high confinements. Prog Energy Combust Sci 18:349–367CrossRefGoogle Scholar
  83. 83.
    Correa SM (1998) Power generation and aeropropulsion gas turbines: from combustion science to combustion technology. Combust Inst 27:1793–1807CrossRefGoogle Scholar
  84. 84.
    Lefebvre AH (1999) Gas turbine combustion. Taylor & Francis, PhiladelphiaGoogle Scholar
  85. 85.
    Bauer HJ (2004) New low emission strategies and combustor designs for civil aeroengine Applications. Prog Comput Fluid Dyn 4:130–142CrossRefGoogle Scholar
  86. 86.
    Meier W, Duan XR, Weigand P, Lehmann B (2004) Temperatur-Messungen in turbulenten Drallflammen: Thermoelemente im Vergleich zu Laser-Raman-Streuung. Gaswärme Int 53:153–158Google Scholar
  87. 87.
    Stricker W, Kohse-Höinghaus K, Jeffries J (2002) Applied combustion diagnostics. Taylor & Francis, New York, pp 155–193Google Scholar
  88. 88.
    Eckbreth AC (1996) Laser diagnostic for combustion temperature and species. Gordon & BreachGoogle Scholar
  89. 89.
    Kohse-Höinghaus K, Jeffries J (2002) Applied combustion diagnostics. Taylor & Francis, New YorkGoogle Scholar
  90. 90.
    Masri AR, Dibble RW, Barlow RS (1996) The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements. Prog Energy Combust Sci 22:307–362CrossRefGoogle Scholar
  91. 91.
    Wolfrum J (1998) Lasers in combustion: from basic theory to practical devices. Symp (Int) On Combust 27(1):1–41CrossRefGoogle Scholar
  92. 92.
    Kaaling H, Ryden R, Bouchie Y, Ansart D, Magre P, Guin C (1997) In: 13th international symposium on air breathing engines (ISABE), Chattanooga, TN (USA)Google Scholar
  93. 93.
    Kampmann S, Seeger T, Leipertz A (1995) Simultaneous CARS and 2D laser Ragleigh thermometry in a contained swirl combustor. Appl Opt 34:2780–2786CrossRefGoogle Scholar
  94. 94.
    Dinkelacker F, Soika A, Most D, Hofmann D, Leipertz A, Polifke W, Döbbeling K (1998) Structure of locally quenched highly turbulent lean premixed flames. Symp (Int) On Combust 27(1):857–865CrossRefGoogle Scholar
  95. 95.
    Fink R, Hupfer A, Rist D (2002) In: Proceedings, ASME turbo expo, GT-2002-30078Google Scholar
  96. 96.
    Cooper CS, Laurendeau NM (2000) Comparison of laser-induced and planar laser-induced fluorescence measurements of nitric oxide in a high-pressure, swirl-stabilized, spray flame. Appl Phys B 70:903–910CrossRefGoogle Scholar
  97. 97.
    Cooper CS, Laurendeau NM (2000) Quantitative measurements of nitric oxide in high-pressure (2–5 atm), swirl-stabilized spray flames via laser-induced fluorescence. Combust Flame 123:175–188CrossRefGoogle Scholar
  98. 98.
    Shih WP, Lee JG, Santavicca DA (1996) Stability and emissions characteristics of a lean premixed gas turbine combustor. Proc Combust Inst 26:2771–2778CrossRefGoogle Scholar
  99. 99.
    Deguchi Y, Noda M, Fukuda Y, Ichinose Y, Endo Y, Inida M, Abe Y, Iwasaki S (2002) Industrial applications of temperature and species concentration monitoring using laser diagnostic. Meas Sci Technol 13:R103–R115CrossRefGoogle Scholar
  100. 100.
    Hedman PO, Warren DL (1995) Turbulent velocity and temperature measurements from a gas-fueled technology combustor with a practical fuel injector. Combust Flame 100:185–192CrossRefGoogle Scholar
  101. 101.
    Lee SY, Seo S, Broda JC, Pal S, Santoro RJ (2000) An experimental estimation of mean reaction rate and flame structure during combustion instability in a lean premixed gas turbine combustor. Proc Combust Inst 28:775–782CrossRefGoogle Scholar
  102. 102.
    Arnold A, Bombach R, Hubschmid W, Käppeli B (2000) Fuel-oil concentration in a gas turbine burner measured with laser-induced fluorescence. Exp Fluids 29(5):468–477Google Scholar
  103. 103.
    Fritz J, Kröner M, Sattelmayer (2001) In: Proceedings, ASME turbo expo, 2001-GT-0054Google Scholar
  104. 104.
    Löfström C, Engström J, Richter M, Kaminsky CF, Johansson P, Nyholm K, Nygren J, AldénM (2000) In: Proceedings, ASME turbo expo, 2000-GT-0124Google Scholar
  105. 105.
    Gittins C, Shenoy S, Aldag H, Pacheco D, Miller M, Allen M (2000) Measurements of major species in a high pressure gas turbine combustion simulator using Raman scattering. 38th Aerospace Sciences Meeting and Exhibit, Andover, MA, USAGoogle Scholar
  106. 106.
    Meier UE, Wolff-Gaßmann D, Heinze J, Frodermann M, Magnusson I, Josefsson G (1999) In: 18th international congress on instrumentation in aerospace simulation facilities (ICIASF 99), Toulouse, pp 7.1–7.7Google Scholar
  107. 107.
    Meier UE, Wolff-Gaßmann D, Stricker W (2000) LIF imaging and 2D temperature mapping in a model combustor at elevated pressure. Aerosp Sci Technol 4:403–414CrossRefGoogle Scholar
  108. 108.
    Carl M, Behrendt T, Fleing C, Frodermann M, Heinze J, Hassa C, Meier U, Wolff-Gaßmann D, Hohmann S, Zarzalis N (2001) Experimental and numerical investigation of a planar combustor sector at realistic operating conditions. J Eng Gas Turbines Power 123:810–816CrossRefGoogle Scholar
  109. 109.
    Kunz O, Noll B, Lückerath R, Aigner M, Hohmann S (2001) In: 37th AIAA/ASME/ SAE/ ASEE joint propulsion conference and exhibition, Salt Lake City, UT, AIAA 2001-3706Google Scholar
  110. 110.
    Williams TC, Shaddix CR, Schefer RW (2008) Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl stabilized combustor. Combust Sci Technol 180:64–88CrossRefGoogle Scholar
  111. 111.
    Sautet JC, Salentey L, DitarantoM, Samaniego JM (2001) Length of natural gas-oxygen non-premixed flames. Combust Sci Technol 166:131–150CrossRefGoogle Scholar
  112. 112.
    Ditaranto M, Hals J (2006) Combustion instabilities in sudden expansion oxy–fuel flames. Combust Flame 146:493–512.  https://doi.org/10.1021/ef300539c. Energy Fuels 2012, 26:4599–4606 CrossRefGoogle Scholar
  113. 113.
    Habib MA, Badr HM, Ahmed SF, Ben-Mansour R, Mezghani K, Imashuku S, Lao GJ, Shao-Horn Y, Mancini ND, Mitsos A, Kirchen P, Ghoniem AF (2011) A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. Int J Energy Res 35:741–764CrossRefGoogle Scholar
  114. 114.
    Hashim SM, Mohamed A, Bhatia S (2010) Current status of ceramic-based membranes for oxygen separation from air. Adv Coll Interface Sci 160:88–100CrossRefGoogle Scholar
  115. 115.
    Habib MA, Tahir F, Nemitallah MA, Ahmed WH, Badr HM (2015) Experimental and numerical analysis of oxy-fuel combustion in a porous plate reactor. Int J Energy Res 39:1229–1240CrossRefGoogle Scholar
  116. 116.
    Habib MA, Nemitallah MA, Ahmed P, Sharqawy MH, Badr HM, Muhammad I, Yaqub M (2015) Experimental analysis of oxygen-methane combustion inside a gas turbine reactor under various operating conditions. Energy 86:105–114CrossRefGoogle Scholar
  117. 117.
    Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD (2008) Advances in CO2 capture technology-the U.S. Department of Energy’s carbon sequestration program. Int J Greenhouse Gas Control 2(1):9–20CrossRefGoogle Scholar
  118. 118.
    Gielen D (2003) The future role of CO2 capture and storage: results of the IEA-ETP model. Report no EET/2003/04. http://www.iea.org/textbase/papers/2003/eet04.pdf
  119. 119.
    Gou C, Cai R, Hong H (2006) An advanced oxy-fuel power cycle with high efficiency. Proc Inst Mech Eng A J Power Energy 220(4):315–325Google Scholar
  120. 120.
    Sanz W, Jericha H, Luckel F, Heitmeir F (2015) A further step towards a Graz cycle power plant for CO2 capture. ASME paper GT2005-68456, ASME turbo expoGoogle Scholar
  121. 121.
    Dahlquist A, Genrup M, Sjoedin M, Jonshagen K (2013) Optimization of an oxy-fuel combined cycle regarding performance and complexity level. In: ASME turbo expo 2013: turbine technical conference and exposition. American Society of Mechanical Engineers, V002T07A011-V002T07A011Google Scholar
  122. 122.
    Richards G, Williams M, Casleton K (2012) Novel cycles: oxy-combustion turbine cycle Systems. In: Combined cycle systems for near-zero emission power generation. Woodhead publishing series 32, pp 186–219Google Scholar
  123. 123.
    U.S. Energy Information Administration (2014) Estimated levelized cost of electricity (LCOE) for new generation resources-2019Google Scholar
  124. 124.
    Chakroun NW, Ghoniem AF (2015) High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO2 capture. Int J Greenhouse Gas Control 41:163–173CrossRefGoogle Scholar
  125. 125.
    Kutne P, Kapadia BK, Meier W, Aigner M (2011) Experimental analysis of the combustion behaviour of oxy fuel flames in a gas turbine model combustor. Proc Combust Inst 33(2):3383–3390CrossRefGoogle Scholar
  126. 126.
    Williams TC, Shaddix CR, Schefer RW (2007) Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl-stabilized combustor. Combust Sci Technol 180(1):64–88 CrossRefGoogle Scholar
  127. 127.
    Andersson K, Mönckert P, Maier J, Scheffknecht G, Johnsson F (2006) Combustion and flame characteristics of oxy-fuel combustion. In: 8th international conference on greenhouse gas control technologies, Trondheim, Norway, pp 9–22Google Scholar
  128. 128.
    Amato A, Hudak R, Noble DR, Scarborough D, Peter A, Seitzman JM, Lieuwen TC (2010) Methane oxy-combustion for low CO2 cycles: measurements and modeling of CO and O2 emissions. In: ASME turbo expo: power for land, sea, and air. American Society of Mechanical Engineers, pp 213–222Google Scholar
  129. 129.
    Richards GA, Casleton KH, Chorpening BT (2005) CO2 and H2O diluted oxy-fuel combustion for zero-emission power. Proc Inst Mech Eng A 219(2):121–126Google Scholar
  130. 130.
    Glarborg P, Bentzen LLB (2008) Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy Fuels 22(1):291–296CrossRefGoogle Scholar
  131. 131.
    Sundkvist SG, Dahlquist A, Janczewski J, Sjödin M, Bysveen M, Ditaranto M, Langörgen y, Seljeskog M, Siljan M (2014) Concept for a combustion system in oxy-fuel gas turbine combined cycles. J Eng Gas Turbines Power 136(10):101513–101513Google Scholar
  132. 132.
    Liu CY, Chen G, Sipöcz N, Assadi M, Bai XS (2012) Characteristics of oxy-fuel combustion in gas turbines. Appl Energy 89:387–394CrossRefGoogle Scholar
  133. 133.
    Aliyu M, Nemitallah MA, Said SA, Habib MA (2016) Characteristics of H2-enriched CH4-O2 diffusion flames in a swirl-stabilized gas turbine combustor: experimental and numerical study. Int J Hydrogen Energy 41(44):20418–20432CrossRefGoogle Scholar
  134. 134.
    Mattingly JD, Von OH (2006) Elements of propulsion : gas turbines and rockets.  https://doi.org/10.2514/4.861789
  135. 135.
    Verhoek FH (1969) Thermodynamics and rocket propulsion. J Chem Educ 46:140.  https://doi.org/10.1021/ed046p140CrossRefGoogle Scholar
  136. 136.
    Rashwan SS, Ibrahim AH, Abou-Arab TW, Nemitallah MA, Habib MA (2016) Experimental investigation of partially premixed methane-air and methane-oxygen flames stabilized over a perforated-plate burner. Appl Energy 169(1):126–137CrossRefGoogle Scholar
  137. 137.
    Hudak R, Noble DR, Scarborough D, Carlo PAD (2010) GT2010-22302:1-11 Google Scholar
  138. 138.
    Amato A, Hudak B, D’Souza P, D’Carlo P, Noble D, Scarborough D, et al (2011) Measurements and analysis of CO and O2 emissions in CH4/CO2/O2 flames. Proc Combust Inst 33:3399–3405CrossRefGoogle Scholar
  139. 139.
    Lieuwen T, McDonell V, Petersen E, Santavicca D (2008) Fuel flexibility influences on premixed combustor blowout, flashback, autoignition, and stability. J Eng Gas Turbines Power 130:011506CrossRefGoogle Scholar
  140. 140.
    Shanbhogue SJ, Husain S, Lieuwen T (2009) Lean blowoff of bluff body stabilized flames: scaling and dynamics. Prog Energy Combust Sci 35:98–120CrossRefGoogle Scholar
  141. 141.
    Zhang Q, Noble DR, Meyers A, Xu K, Lieuwen T (2005) Characterization of fuel composition effects in H2/CO/CH4 mixtures upon lean Blowout. ASME/IGTI turbo expo 129:1–13Google Scholar
  142. 142.
    Imteyaz B, Habib MA, Nemitallah MA, Jamal A (2015) Investigation of liquid ethanol evaporation and combustion in air and oxygen environments inside a 25-kW vertical reactor. Proc Inst Mech Eng Part A J Power Energy:1–15Google Scholar
  143. 143.
    Li T, Nishida K, Hiroyasu H (2011) Droplet size distribution and evaporation characteristics of fuel spray by a swirl type atomizer. Fuel 90(7):2367–2376CrossRefGoogle Scholar
  144. 144.
    Ghassemi H, Baek SW, Khan QS (2006) Experimental study on evaporation of kerosene droplets at elevated pressures and temperatures. Combust Sci Technol 178(9):1669–1684CrossRefGoogle Scholar
  145. 145.
    Negeed ESR, Ishihara N, Tagashira K, Hidaka S, Kohno M, Takata Y (2010) Experimental study on the effect of surface conditions on evaporation of sprayed liquid droplet. Int J Therm Sci 49(12):2250–2271CrossRefGoogle Scholar
  146. 146.
    Bhattacharya P, Ghosal S, Som SK (1996) Evaporation of multicomponent liquid fuel droplets. Int J Energy Res 20(5):385–398CrossRefGoogle Scholar
  147. 147.
    Kamal MM, Mohamad AA (2007) Investigation of liquid fuel combustion in a cross-flow burner. Proc Inst Mech Eng Part A J Power Energy 221(3):371–385Google Scholar
  148. 148.
    Heyes AL, Jelercic D, Whitelaw JH (1998) Experiments in a small gas-turbine combustor with gas and liquid fuels. RTO MP 14:12–16Google Scholar
  149. 149.
    Lacas F, Leroux B, Darabiha N (2005) Experimental study of air dilution in oxy-liquid fuel flames. Proc Combust Inst 30(2):2037–2045CrossRefGoogle Scholar
  150. 150.
    Wang H, Luo K, Fan J (2014) Effects of turbulent intensity and droplet diameter on spray combustion using direct numerical simulation. Fuel 121:311–318CrossRefGoogle Scholar
  151. 151.
    Moriai H, Kurose R, Watanabe H, Yano Y, Akamatsu F, Komori S (2013) Large-eddy simulation of turbulent spray combustion in a subscale aircraft jet engine combustor-predictions of NO and soot concentrations. J Eng Gas Turbines Power 135:091503CrossRefGoogle Scholar
  152. 152.
    Yin C (2015) Modeling of heating and evaporation of n-heptane droplets: towards a generic model for fuel droplet/particle conversion. Fuel 141:64–73CrossRefGoogle Scholar
  153. 153.
    Kitano T, Nishio J, Kurose R, Komori S (2014) Evaporation and combustion of multicomponent fuel droplets. Fuel 136:219–225CrossRefGoogle Scholar
  154. 154.
    Jiang L, Agrawal AK, Taylor RP (2014) Clean combustion of different liquid fuels using a novel injector. Exp Therm Fluid Sci 57:275–284CrossRefGoogle Scholar
  155. 155.
    Park SH, Yoon SH (2015) Injection strategy for simultaneous reduction of NOx and soot emissions using two-stage injection in DME fueled engine. Appl Energy 143:262–270CrossRefGoogle Scholar
  156. 156.
    Speth RL, Rojo C, Malina R, Barrett SRH (2015) Black carbon emissions reductions from combustion of alternative jet fuels. Atmos Environ 105:37–42CrossRefGoogle Scholar
  157. 157.
    Choi SK, Choi BC, Lee SM, Choi JH (2015) The effect of liquid fuel doping on PAH and soot formation in counter flow ethylene diffusion flames. Exp Therm Fluid Sci 60:123–131CrossRefGoogle Scholar
  158. 158.
    Lacas F, Leroux B, Darabiha N (2005) Experimental study of air dilution in oxy-liquid fuel flames. Proc Combust Inst 30:2037–2045CrossRefGoogle Scholar
  159. 159.
    Chaillou D, Alaterre V, Paubel X, Marcano N, Leroux B, Tsiava R (2010) Characterization of fuel oil atomizers at industrial scale, pp 1–8Google Scholar
  160. 160.
    Yi F, Axelbaum RL (2013) Oxy-combustion of low-volatility fuel with high water content. Department of Energy, Environmental & Chemical Engineering, St. Louis, Washington University, USA, pp 1–8Google Scholar
  161. 161.
    Yi F (2013) Oxy-combustion of high water content fuels. Electronic theses and dissertations. Paper 1177Google Scholar
  162. 162.
    Chi CC, Lin T (2013) Oxy-oil combustion characteristics of an existing furnace. Appl Energy 102:923–930CrossRefGoogle Scholar
  163. 163.
    U.S. Department of Energy (2010) Energy sources: electric power-fossil fuel. http://www.energy.gov/energysources/electricpower.htm
  164. 164.
    Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF (2005) Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci 31:283–307CrossRefGoogle Scholar
  165. 165.
    Wall TF (2007) Combustion processes for carbon capture. Proc Combust Inst 31(1):31–47MathSciNetCrossRefGoogle Scholar
  166. 166.
    Scheffknecht G, Al-Makhadmeh L, Schnell U, Maier J (2011) Oxy-fuel coal combustion—a review of the current state-of-the-art. Int J Greenhouse Gas Control 5:16–35CrossRefGoogle Scholar
  167. 167.
    Chen L, Yong SZ, Ghoniem AF (2012) Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling. Prog Energy Combust Sci 38(2):156–214CrossRefGoogle Scholar
  168. 168.
    Borah RC, Ghosh P, Rao PG (2011) A review on devolatilization of coal in fluidized bed. Int J Energy Res 35(11):929–963CrossRefGoogle Scholar
  169. 169.
    Mathekga HI, Oboirien BO, North BC (2016) A review of oxy-fuel combustion in fluidized bed reactors. Int J Energy Res 40(7):878–902CrossRefGoogle Scholar
  170. 170.
    Kab H, Tappe S, Krautz HJ (2008) The combustion of dry lignite under oxy-fuel process conditions in a 0.5-MWth test plant. Energy Procedia 1:423–430Google Scholar
  171. 171.
    Miklaszewski EJ, Zheng Y, Son SF (2013) Oxy-fuel combustion: laboratory experiments and pilot scale tests. Fuel 104:452–461CrossRefGoogle Scholar
  172. 172.
    Jia L, Tan Y, McCalden D, Wu Y, He I, Symonds R, Anthony EJ (2012) Commissioning of a 0.8 MWth CFBC for oxy-fuel combustion. Int J Greenhouse Gas Control 7:240–243CrossRefGoogle Scholar
  173. 173.
    Hong J, Field R, Gazzino M, Ghoniem AF (2010) Operating pressure dependence of the pressurized oxy-fuel combustion power cycle. Energy 35(12):5391–5399CrossRefGoogle Scholar
  174. 174.
    Chen HT, Wu W (2015) Efficiency enhancement of pressurized oxy-coal power plant with heat integration. Int J Energy Res 39(2):256–264CrossRefGoogle Scholar
  175. 175.
    Tumsa TZ, Mun TY, Lee U, Yang W (2017) Effects of coal characteristics to performance of a highly efficient thermal power generation system based on pressurized oxy-fuel combustion. Int J Energy Res 41(1):127–138CrossRefGoogle Scholar
  176. 176.
    Zebian H, Gazzino M, Mitsos A (2012) Multi-variable optimization of pressurized oxy-coal combustion. Energy 38:37–57CrossRefGoogle Scholar
  177. 177.
    Donato F, Favini B, Giacomazzi E, Picchia FR, Arcidiacono N, Cecere D, Creta F (2010) Numerical modelling of pulverized coal oxy-combustion. Report RdS/2010/30Google Scholar
  178. 178.
    Hong J, Kirchen P, Ghoniem AF (2013) Laminar oxy-fuel diffusion flame supported by an oxygen-permeable-ion-transport membrane. Combust Flame 160(3):704–717CrossRefGoogle Scholar
  179. 179.
    Stadler H, Beggel F, Habermehl M, Persigehl B, Kneer R, Modigell M, Jeschke P (2011) Oxy-fuel coal combustion by efficient integration of oxygen transport membranes. Int J Greenhouse Gas Control 5(1):7–15CrossRefGoogle Scholar
  180. 180.
    Al-Makhadmeh L, Maier J, Al-Harahsheh M, Scheffknecht G (2013) Oxy-fuel technology: an experimental investigation into oil shale combustion under oxy-fuel conditions. Fuel 103:421–429CrossRefGoogle Scholar
  181. 181.
    Marek E, Swiatkowski B (2014) Experimental studies of single particle combustion in air and different oxy-fuel atmospheres. Appl Therm Eng 66:35–42CrossRefGoogle Scholar
  182. 182.
    Burkett J (2006) Reborn in the USA, modern power systems. Available from: http://www.modernpowersystems.com/story.aspstoryCode=2037552
  183. 183.
    Chiesa P, Consonni S (1999a) Shift reactors and physical absorption for low-CO2 emission IGCCs. ASME J Eng Gas Turbines Power 121:295–305CrossRefGoogle Scholar
  184. 184.
    Chiesa P, Lozza G (1999b) CO2 emission abatement in IGCC power plants by semi-closed cycles: part A—with oxygen-blown combustion. ASME J Eng Gas Turbines Power 121:635–641CrossRefGoogle Scholar
  185. 185.
    Chiesa P, Lozza G (1999c) CO2 emission abatement in IGCC power plants by semi-closed cycles: part B—with air-blown combustion and CO2 physical absorption. ASME J Eng Gas Turbines Power 121:642–648Google Scholar
  186. 186.
    Sanz W, Mayr M, Jericha H (2010) Thermodynamic and economic evaluation of an IGCC plant based on the Graz cycle for CO2 capture. In: ASME turbo expo 2010, paper GT2010–22189, Glasgow, UKGoogle Scholar
  187. 187.
    Pronske K, Trowsdale L, Macadam S, Viteri F (2006) An overview of turbine and combustor development for coal-based oxy-syngas systems. In: ASME turbo expo 2006, paper GT2006–90816, Barcelona, SpainGoogle Scholar
  188. 188.
    Davidson RM, Santos S (2010) Oxy-fuel combustion of pulverised coal. IEA Clean Coal Centre. Report no CCC/168, ISBN 978-92-9029-488-7, June 2010Google Scholar
  189. 189.
    Liu H, Zailani R, Gibbs BM (2005) Pulverized coal combustion in air and in O2/CO2 mixtures with NOx recycle. Fuel 84(16):2109–2115CrossRefGoogle Scholar
  190. 190.
    Kiga T, Takano S, Kimura N, Omata K, Okawa M, Mori T, Kato M (1997) Characteristics of pulverized-coal combustion in the system of oxygen/recycled flue gas combustion. Proc Third Int Conf Carbon Dioxide Remov 38(supplement 0):S129CrossRefGoogle Scholar
  191. 191.
    Molina A, Shaddix CR (2007) Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proc Combust Inst 31(2):1905–1912CrossRefGoogle Scholar
  192. 192.
    Zhang J, Kelly KE, Eddings EG, Wendt JOL (2011) CO2 effects on near field aerodynamic phenomena in 40-kW, co-axial, oxy-coal, turbulent diffusion flames. IJGCC 5(special issue/suppl):S47–S57Google Scholar
  193. 193.
    Stanger R, Wall T, Spörl R et al (2015) Oxy-fuel combustion for CO2 capture in power plants. Int J Greenhouse Gas Control 40:55–125CrossRefGoogle Scholar
  194. 194.
    Burchhardt U, Griebe S (2013) Tests and results of Vattenfall’s oxy-fuel pilot plant. In: 3rd oxy-fuel combustion conference (OCC3), Ponferrada, Spain, Sept 2013Google Scholar
  195. 195.
    Copin D (2013) The storage dimension of the oxy-combustion based integrated CCS project of Lacq and Rousse. In: 3rd oxy-fuel combustion conference (OCC3), Ponferrada, Spain, Sept 2013Google Scholar
  196. 196.
    Otero P (2013) Keeping the flame alight. An overview to CIUDEN’s R&D activities—the way forward. In: 3rd oxy-fuel combustion conference (OCC3), Ponferrada, Spain, Sept 2013Google Scholar
  197. 197.
    Zheng C (2014) Some important aspects about oxy-fuel combustion technology. In: 39th clear water conference, Clearwater, Fl, USA, June 2009Google Scholar
  198. 198.
    Ekstrom C, Schwending F, Biede O, Franco F, Haupt G, Koeijer G, Papapavlou C, Rokke PE (2009) Techno-economic evaluations and benchmarking of pre-combustion CO2 capture and oxy-fuel process development in the European ENCAP project. Energy Procedia 1(1):4233–4240CrossRefGoogle Scholar
  199. 199.
    Colombo KE, Bolland O, Khorton VV, Stiller C (2009) Simulation of an oxygen membrane-based combined cycle power plant: part load operation with operational and material constraints. Energy Environ Sci 2:1310–1324CrossRefGoogle Scholar
  200. 200.
    Hong J, Chaudhry G, Brisson JG, Field R, Gazzino M, Ghoniem AF (2009) Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor. Energy 34(9):1332–1340CrossRefGoogle Scholar
  201. 201.
    Pak PS, Lee YD, Ahn KY (2010) Characteristics and economic evaluation of a power plant applying oxy-fuel combustion to increase power output and decrease CO2 emission. Energy 35:3230–3238CrossRefGoogle Scholar
  202. 202.
    Jamal A, Pham TV, Al-Juaied M (2012) Combined hydrogen and electricity production with CO2 capture using liquid petroleum fuels. Saudi Aramco J Technol Winter 2012:15–22Google Scholar
  203. 203.
    Zak GM, Mancini ND, Mitsos A (2013) Integration of thermal desalination methods with membrane-based oxy-combustion power cycles. Desalination 311:137–149CrossRefGoogle Scholar
  204. 204.
    Gunasekaran S, Mancini ND, Mitsos A (2014) Optimal design and operation of membrane-based oxy-combustion power plants. Energy 70:338–354CrossRefGoogle Scholar
  205. 205.
    Zebian H, Rossi N, Gazzino M, Cumbo D, Mitsos A (2013) Optimal design and operation of pressurized oxy-coal combustion with a direct contact separation column. Energy 49:268–278CrossRefGoogle Scholar
  206. 206.
    Job M, Bartela L, Skorek-Osikowska A (2013) Analysis of the use of waste heat in the oxy-combustion power plant to replace the steam cycle heat regeneration. J Power Technol 93(3):133–141Google Scholar
  207. 207.
    Park SK, Kim TS, Sohn JL, Lee YD (2011) An integrated power generation system combining solid oxide fuel cell and oxy-fuel combustion for high performance and CO2 capture. Appl Energy 88(4):1187–1196CrossRefGoogle Scholar
  208. 208.
    Skorek-Osikowska A, Bartela L, Kotowicz J, Job M (2013) Thermodynamic and economic analysis of the different variants of a coal-fired, 460-MW power plant using oxy-combustion technology. Energy Convers Manag 76:109–120CrossRefGoogle Scholar
  209. 209.
    IEA Green House Gas R&D Programme (2005) Oxy combustion processes for CO2 capture from power plant. IEA greenhouse gas R&D programme, report number 2005/9Google Scholar
  210. 210.
    IEA Greenhouse Gas R&D Programme (IEAGHG) report (2012) Emissions of substances other than CO2 from power plants with CCS. Mar 2012 (03)Google Scholar
  211. 211.
    Scholes CA, Smith KH, Kentish SE, Stevens GW (2010) CO2 capture from pre-combustion processes—strategies for membrane gas separation. Int J Greenhouse Gas Control 4:739–755CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Medhat A. Nemitallah
    • 1
    Email author
  • Mohamed A. Habib
    • 2
  • Hassan M. Badr
    • 3
  1. 1.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  3. 3.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations