Towards the Manufacturing of Near Net Shape Medical Prostheses in Polymeric Sheet by Incremental Sheet Forming

  • Isabel Bagudanch
  • Gabriel Centeno
  • Carpóforo Vallellano
  • Maria Luisa Garcia-RomeuEmail author
Part of the Materials Forming, Machining and Tribology book series (MFMT)


The main objective of this chapter is to increase the existing knowledge in Incremental Sheet Forming (ISF), as a near net shape medical manufacturing process specifically for obtaining polymer of prostheses-parts, evaluating and defining the process parameters involved to improve the technology based on the analysis of quantitative outputs. This should help to provide process guidelines useful for manufacturing complex and customized parts, to be applied for example in the biomedical field. The chapter is divided into two main blocks: (i) the study of the influence of the process parameters on basic polymeric geometries manufactured by SPIF, and (ii) an analysis of some case studies of cranial implants manufactured by ISF using non-biocompatible and biocompatible polymers.


ISF SPIF TPIF Polymeric sheet Cranial prosthesis 

List of Symbols


Total cost of the ISF process


Forming cost


Setup cost


Cost of workpiece and equipment handling


Tooling cost


Direct material cost


Indirect material cost


Direct energy cost


Ancillary energy cost


Environmental burden cost


Forming time


Labour rate


Burden rate including depreciation, maintenance, taxes, interest rate


Forming cost rate including Lf and Bf


Number of parts


Setup time


Idling time


Time required to change tool


Tool cost


Tool life


Cost of workpiece material


Direct material used


Cost of forming lubricant


Quantity of forming lubricant used


Cost of machine lubricant


Quantity of machine lubricant used


Cost of electricity


Direct energy consumed


Ancillary energy consumed

\( \text{E}_{\text{CO}_{2}} \)

CO2 emitted due to energy

\( \text{LO}_{\text{fCO}_{2}} \)

CO2 emitted due to forming lubricant

\( \text{LO}_{\text{CO}_{2}} \)

CO2 emitted due to machine lubricant

\( \text{TL}_{\text{CO}_{2}} \)

CO2 emitted due to the tool

\( \text{ML}_{\text{CO}_{2}} \)

CO2 emitted due to direct material

\( \text{K}_{\text{CO}_{2}} \)

Carbon cost


  1. 1.
    Jeswiet J, Adams D, Doolan M, McAnulty T, Gupta P (2015) Single point and asymmetric incremental forming. Adv Manuf 3:253–262. Scholar
  2. 2.
    Fratini L, Ambrogio G, Di Lorenzo R, Filice L, Micari F (2004) Influence of mechanical properties of the sheet material on formability in single point incremental forming. CIRP Ann Manuf Technol 53:207–210. Scholar
  3. 3.
    Ambrogio G, Costantino I, Denapoli L, Filice L, Fratini L, Muzzupappa M (2004) Influence of some relevant process parameters on the dimensional accuracy in incremental forming: a numerical and experimental investigation. J Mater Process Technol 153–154:501–507. Scholar
  4. 4.
    Araghi BT, Manco GL, Bambach M, Hirt G (2009) Investigation into a new hybrid forming process: incremental sheet forming combined with stretch forming. CIRP Ann Manuf Technol 58:225–228. Scholar
  5. 5.
    Bambach M, Taleb Araghi B, Hirt G (2009) Strategies to improve the geometric accuracy in asymmetric single point incremental forming. Prod Eng 3:145–156. Scholar
  6. 6.
    Ceretti E (2004) Experimental and simulative results in sheet incremental forming on CNC machines. J Mater Process Technol 152:176–184. Scholar
  7. 7.
    Aerens R, Eyckens P, Bael A, Duflou JR (2010) Force prediction for single point incremental forming deduced from experimental and FEM observations. Int J Adv Manuf Technol 46:969–982. Scholar
  8. 8.
    Van Sy L, Nam NT (2015) Effect of strain rate and temperature on formability of warm-incremental forming process with magnesium alloy sheet AZ31. J Manuf Technol Res 6:17–31Google Scholar
  9. 9.
    Ambrogio G, Gagliardi F, Bruschi S, Filice L (2013) On the high-speed single point incremental forming of titanium alloys. CIRP Ann Manuf Technol 62:243–246. Scholar
  10. 10.
    Franzen V, Kwiatkowski L, Martins P, Tekkaya A (2009) Single point incremental forming of PVC. J Mater Process Technol 209:462–469. Scholar
  11. 11.
    Martins PAF, Kwiatkowski L, Franzen V, Tekkaya AE, Kleiner M (2009) Single point incremental forming of polymers. CIRP Ann Manuf Technol 58:229–232. Scholar
  12. 12.
    Davarpanah MA, Mirkouei A, Yu X, Malhotra R, Pilla S (2015) Effects of incremental depth and tool rotation on failure modes and microstructural properties in single point incremental forming of polymers. J Mater Process Technol 222:287–300. Scholar
  13. 13.
    Davarpanah MA, Bansal S, Malhotra R (2017) Influence of single point incremental forming on mechanical properties and chain orientation in thermoplastic polymers. J Manuf Sci Eng 139:21012–21019. Scholar
  14. 14.
    Lozano-Sánchez LM, Sustaita AO, Soto M, Biradar S, Ge L, Segura-Cárdenas E et al (2017) Mechanical and structural studies on single point incremental forming of polypropylene-MWCNTs composite sheets. J Mater Process Technol 242:218–227. Scholar
  15. 15.
    Fiorentino A, Marenda GP, Marzi R, Ceretti E, Kemmoku DT, Silva JVL (2012) Rapid prototyping techniques for individualized medical prosthesis manufacturing. Innov Dev Virtual Phys Prototyp 1:589–594. Scholar
  16. 16.
    Ingarao G, Vanhove H, Kellens K, Duflou JR (2014) A comprehensive analysis of electric energy consumption of single point incremental forming processes. J Clean Prod 67:173–186. Scholar
  17. 17.
    Bagudanch I, Garcia-Romeu ML, Centeno G, Elías-Zúñiga A, Ciurana J (2015) Forming force and temperature effects on single point incremental forming of polyvinylchloride. J Mater Process Technol 219:221–229. Scholar
  18. 18.
    Bagudanch I, Garcia-Romeu ML, Sabater M (2016) Incremental forming of polymers: process parameters selection from the perspective of electric energy consumption and cost. J Clean Prod 112:1013–1024. Scholar
  19. 19.
    Branker K (2011) A study of energy, carbon dioxide emissions and economics in machining: milling and single point incremental forming. p 292Google Scholar
  20. 20.
    Bagudanch I, Vives-Mestres M, Sabater M, Garcia-Romeu ML (2017) Polymer incremental sheet forming process: temperature analysis using response surface methodology. Mater Manuf Process 32. Scholar
  21. 21.
    Hussain G, Mahna A, Iqbal A (2016) Response surface analysis of cold formability of polymers in incremental sheet forming: effect of parameters and associated thermal softening. Int J Precis Eng Manuf 17:613–621. Scholar
  22. 22.
    Marques TA, Silva MB, Martins PAF (2012) On the potential of single point incremental forming of sheet polymer parts. Int J Adv Manuf Technol 60:75–86CrossRefGoogle Scholar
  23. 23.
    Silva MB, Martinho TM, Martins PAF (2013) Incremental forming of hole-flanges in polymer sheets. Mater Manuf Process 28:330–335. Scholar
  24. 24.
    Bagudanch I, Centeno G, Vallellano C, Garcia-Romeu ML (2017) Revisiting formability and failure of polymeric sheets deformed by single point incremental forming. Polym Degrad Stab 144:366–377. Scholar
  25. 25.
    Centeno G, Martinez-Donaire AJ, Morales-Palma D, Vallellano C, Silva MB, Martins PAF (2015) Novel experimental techniques for the determination of the forming limits at necking and fracture. In: Materials forming and machining: research and development, pp 1–24. Scholar
  26. 26.
    Atkins AG (1996) Fracture in forming. J Mater Process Technol 56:609–618. Scholar
  27. 27.
    Ambrogio G, Denapoli L, Filice L, Gagliardi F, Muzzupappa M (2005) Application of incremental forming process for high customised medical product manufacturing. J Mater Process Technol 162–163:156–162. Scholar
  28. 28.
    Duflou JR, Lauwers B, Verbert J, Gelaude F, Tunckol Y (2005) Medical application of single point incremental forming: cranial plate manufacturing. In: Virtual modelling and rapid manufacturing—advanced research in virtual and rapid prototyping, pp 161–166Google Scholar
  29. 29.
    Han F, Mo JH, Wang P, Deng YZ (2010) A digital manufacture technology for skull prosthesis using incremental sheet forming method. Adv Mater Res 102–104:348–352. Scholar
  30. 30.
    Göttmann A, Korinth M, Schäfer V, Araghi BT, Bambach M, Hirt G (2013) Manufacturing of individualized cranial implants using two point incremental sheet metal forming. Futur Trends Prod Eng 5:287–295. Scholar
  31. 31.
    Li Y, Liu Z, Lu H, Daniel WJT, Liu S, Meehan PA (2014) Efficient force prediction for incremental sheet forming and experimental validation. Int J Adv Manuf Technol 73:571–587. Scholar
  32. 32.
    Castelan J, Schaeffer L, Daleffe A, Fritzen D, Salvaro V, Da Silva FP (2014) Manufacture of custom-made cranial implants from DICOM images using 3D printing, CAD/CAM technology and incremental sheet forming. Rev Bras Eng Biomed 30:265–273. Scholar
  33. 33.
    Ambrogio G, Conte R, de Napoli L, Fragomeni G, Gagliardi F (2015) Forming approaches comparison for high customised skull manufacturing. Key Eng Mater 651–653:925–931. Scholar
  34. 34.
    Tanaka S, Nakamura T, Hayakawa K, Nakamura H, Motomura K (2007) Residual stress in sheet metal parts made by incremental forming process. AIP Conf Proc 908:775–780. Scholar
  35. 35.
    Milutinovic M, Lendel R, Potran M, Vilotic D, Skakun P, Plancak M (2014) Application of single point incremental forming for manufacturing of denture base. J Technol Plast 39:15–24Google Scholar
  36. 36.
    Oleksik V, Pascu A, Mara D, Bologa O, Racz G, Breaz R (2010) Influence of geometric parameters on strain and thickness reduction in incremental forming process. Met Form 8–11Google Scholar
  37. 37.
    Duflou JR, Behera AK, Vanhove H, Bertol LS (2013) Manufacture of accurate titanium cranio-facial implants with high forming angle using single point incremental forming. Key Eng Mater 549:223–230. Scholar
  38. 38.
    Araujo R, Teixeira P, Montanari L, Reis A, Silva MB, Martins PA (2014) Single point incremental forming of a facial implant. Prosthet Orthot Int 38:369–378. Scholar
  39. 39.
    Garcia-Romeu ML, Pérez-Santiago R, Bagudanch I, Puigpinós L (2012) Fabrication of a biopsy micro-forceps prototype with incremental sheet forming. In: Proceedings of the 1st international conference on design and processes for medical devices (PROMED), pp 103–106Google Scholar
  40. 40.
    Bagudanch I, Garcia-Romeu ML, Ferrer I (2014) Manufacturing of thermoplastic cranial prosthesis by incremental sheet forming. In: Proceedings of the 2nd international conference on design and processes for medical devices (PROMED), Monterrey, pp 95–98Google Scholar
  41. 41.
    Bagudanch I, Lozano-Sánchez LM, Puigpinós L, Sabater M, Elizalde LE, Elías-Zúñiga A et al (2015) Manufacturing of polymeric biocompatible cranial geometry by single point incremental forming. Proc Eng 132:267–273. Scholar
  42. 42.
    Centeno G, Morales-Palma D, Gonzalez-Perez-Somarriba B, Bagudanch I, Egea-Guerrero JJ, Gonzalez-Perez LM et al (2017) A functional methodology on the manufacturing of customized polymeric cranial prostheses from CAT using SPIF. Rapid Prototyp J 23. Scholar
  43. 43.
    Bagudanch I, Garcia-Romeu ML, Ferrer I, Ciurana J (2018) Customized cranial implant manufactured by incremental sheet forming using a biocompatible polymer. Rapid Prototyp J 24. Scholar
  44. 44.
    Allwood JM, King GPF, Duflou J (2005) A structured search for applications of the incremental sheet-forming process by product segmentation. Proc Inst Mech Eng, Part B: J Eng Manuf 219:239–244. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Isabel Bagudanch
    • 1
  • Gabriel Centeno
    • 2
  • Carpóforo Vallellano
    • 2
  • Maria Luisa Garcia-Romeu
    • 1
    Email author
  1. 1.Department of Mechanical Engineering and Industrial ConstructionUniversity of GironaGironaSpain
  2. 2.Department of Mechanical and Manufacturing EngineeringUniversity of SevilleSevilleSpain

Personalised recommendations