Advertisement

Arbitrary Pattern Formation on Infinite Grid by Asynchronous Oblivious Robots

  • Kaustav BoseEmail author
  • Ranendu Adhikary
  • Manash Kumar Kundu
  • Buddhadeb Sau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11355)

Abstract

The Arbitrary Pattern Formation problem asks to design a distributed algorithm that allows a set of autonomous mobile robots to form any specific but arbitrary geometric pattern given as input. The problem has been extensively studied in literature in continuous domains. This paper investigates a discrete version of the problem where the robots are operating on a two dimensional infinite grid. The robots are assumed to be autonomous, identical, anonymous and oblivious. They operate in Look-Compute-Move cycles under a fully asynchronous scheduler. The robots do not agree on any common global coordinate system or chirality. We have shown that a set of robots can form any arbitrary pattern, if their starting configuration is asymmetric.

Keywords

Distributed algorithm Autonomous robots Arbitrary Pattern Formation Grid Asynchronous Look-Compute-Move cycle 

Notes

Acknowledgements

The first three authors are supported by NBHM, DAE, Govt. of India, CSIR, Govt. of India and UGC, Govt. of India respectively. We would like to thank the anonymous reviewers for their valuable comments which helped us improve the quality and presentation of this paper.

References

  1. 1.
    Adhikary, R., Bose, K., Kundu, M.K., Sau, B.: Mutual visibility by asynchronous robots on infinite grid. In: 14th International Symposium on Algorithms and Experiments for Wireless Networks (ALGOSENSORS 2018), Helsinki, Finland, 23–24 August 2018 (Forthcoming)Google Scholar
  2. 2.
    Bose, K., Adhikary, R., Kundu, M.K., Sau, B.: Arbitrary pattern formation on infinite grid by asynchronous oblivious robots. CoRR abs/1811.00834 (2018). http://arxiv.org/abs/1811.00834
  3. 3.
    Bramas, Q., Tixeuil, S.: Brief announcement: probabilistic asynchronous arbitrary pattern formation. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, pp. 443–445, 25–28 July 2016.  https://doi.org/10.1145/2933057.2933074
  4. 4.
    Cicerone, S., Di Stefano, G., Navarra, A.: Asynchronous arbitrary pattern formation: the effects of a rigorous approach. Distrib. Comput., 1–42 (2018)  https://doi.org/10.1007/s00446-018-0325-7
  5. 5.
    Cicerone, S., Di Stefano, G., Navarra, A.: Embedded pattern formation by asynchronous robots without chirality. Distrib. Comput., 1–25 (2018).  https://doi.org/10.1007/s00446-018-0333-7
  6. 6.
    Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Forming sequences of geometric patterns with oblivious mobile robots. Distrib. Comput. 28(2), 131–145 (2015).  https://doi.org/10.1007/s00446-014-0220-9MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dieudonné, Y., Petit, F., Villain, V.: Leader election problem versus pattern formation problem. CoRR abs/0902.2851 (2009). http://arxiv.org/abs/0902.2851
  8. 8.
    Dieudonné, Y., Petit, F., Villain, V.: Leader election problem versus pattern formation problem. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 267–281. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15763-9_26CrossRefGoogle Scholar
  9. 9.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3), 412–447 (2008).  https://doi.org/10.1016/j.tcs.2008.07.026MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015).  https://doi.org/10.1137/140958682MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lukovszki, T., Meyer auf der Heide, F.: Fast collisionless pattern formation by anonymous, position-aware robots. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS, vol. 8878, pp. 248–262. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-14472-6_17CrossRefGoogle Scholar
  12. 12.
    Stefano, G.D., Navarra, A.: Gathering of oblivious robots on infinite grids with minimum traveled distance. Inf. Comput. 254, 377–391 (2017).  https://doi.org/10.1016/j.ic.2016.09.004MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots. In: SIROCCO 1996, The 3rd International Colloquium on Structural Information & Communication Complexity, Siena, Italy, pp. 313–330, 6–8 June 1996Google Scholar
  14. 14.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999).  https://doi.org/10.1137/S009753979628292XMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yamauchi, Y., Yamashita, M.: Pattern formation by mobile robots with limited visibility. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 201–212. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03578-9_17CrossRefGoogle Scholar
  16. 16.
    Yamauchi, Y., Yamashita, M.: Randomized pattern formation algorithm for asynchronous oblivious mobile robots. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 137–151. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45174-8_10CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsJadavpur UniversityKolkataIndia

Personalised recommendations