Advertisement

(kp)-Planarity: A Relaxation of Hybrid Planarity

  • Emilio Di Giacomo
  • William J. Lenhart
  • Giuseppe Liotta
  • Timothy W. RandolphEmail author
  • Alessandra Tappini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11355)

Abstract

We present a new model for hybrid planarity that relaxes existing hybrid representations. A graph \(G = (V,E)\) is (kp)-planar if V can be partitioned into clusters of size at most k such that G admits a drawing where: (i) each cluster is associated with a closed, bounded planar region, called a cluster region; (ii) cluster regions are pairwise disjoint, (iii) each vertex \(v \in V\) is identified with at most p distinct points, called ports, on the boundary of its cluster region; (iv) each inter-cluster edge \((u,v) \in E\) is identified with a Jordan arc connecting a port of u to a port of v; (v) inter-cluster edges do not cross or intersect cluster regions except at their endpoints. We first tightly bound the number of edges in a (kp)-planar graph with \(p<k\). We then prove that (4, 1)-planarity testing and (2, 2)-planarity testing are NP-complete problems. Finally, we prove that neither the class of (2, 2)-planar graphs nor the class of 1-planar graphs contains the other, indicating that the (kp)-planar graphs are a large and novel class.

Keywords

\((k, p)\)-Planarity Hybrid representations Clustered graphs 

References

  1. 1.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Intersection-link representations of graphs. J. Graph Algorithms Appl. 21(4), 731–755 (2017).  https://doi.org/10.7155/jgaa.00437MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Batagelj, V., Brandenburg, F., Didimo, W., Liotta, G., Palladino, P., Patrignani, M.: Visual analysis of large graphs using (X, Y)-clustering and hybrid visualizations. IEEE Trans. Vis. Comput. Graph. 17(11), 1587–1598 (2011).  https://doi.org/10.1109/TVCG.2010.265CrossRefGoogle Scholar
  3. 3.
    de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the plane. Int. J. Comput. Geom. Appl. 22(3), 187–206 (2012). http://www.worldscinet.com/doi/abs/10.1142/S0218195912500045MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Montecchiani, F.: Recognizing and drawing IC-planar graphs. Theor. Comput. Sci. 636, 1–16 (2016).  https://doi.org/10.1016/j.tcs.2016.04.026MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing NodeTrix representations of clustered graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 107–120. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50106-2_9CrossRefGoogle Scholar
  6. 6.
    Di Giacomo, E., Lenhart, W.J., Liotta, G., Randolph, T.W., Tappini, A.: (k, p)-planarity: A relaxation of hybrid planarity. CoRR abs/1806.11413 (2018)Google Scholar
  7. 7.
    Di Giacomo, E., Liotta, G., Patrignani, M., Tappini, A.: NodeTrix planarity testing with small clusters. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 479–491. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73915-1_37CrossRefGoogle Scholar
  8. 8.
    Eades, P., de Mendonça N, C.F.X.: Vertex splitting and tension-free layout. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 202–211. Springer, Heidelberg (1996).  https://doi.org/10.1007/BFb0021804CrossRefGoogle Scholar
  9. 9.
    Eppstein, D., et al.: On the planar split thickness of graphs. Algorithmica 80(3), 977–994 (2018).  https://doi.org/10.1007/s00453-017-0328-yMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Henry, N., Fekete, J., McGuffin, M.J.: NodeTrix: a hybrid visualization of social networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007).  https://doi.org/10.1109/TVCG.2007.70582CrossRefGoogle Scholar
  11. 11.
    Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25, 49–67 (2017).  https://doi.org/10.1016/j.cosrev.2017.06.002MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kowalik, Ł.: Approximation scheme for lowest outdegree orientation and graph density measures. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 557–566. Springer, Heidelberg (2006).  https://doi.org/10.1007/11940128_56CrossRefzbMATHGoogle Scholar
  13. 13.
    Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997).  https://doi.org/10.1007/BF01215922MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zhang, X., Liu, G.: The structure of plane graphs with independent crossings and its applications to coloring problems. Cent. Eur. J. Math. 11(2), 308–321 (2013).  https://doi.org/10.2478/s11533-012-0094-7MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Emilio Di Giacomo
    • 1
  • William J. Lenhart
    • 2
  • Giuseppe Liotta
    • 1
  • Timothy W. Randolph
    • 3
    Email author
  • Alessandra Tappini
    • 1
  1. 1.Università degli Studi di PerugiaPerugiaItaly
  2. 2.Williams CollegeWilliamstownUSA
  3. 3.Columbia UniversityNew York CityUSA

Personalised recommendations