A Parallel Cellular Automaton Model For Adenocarcinomas in Situ with Java: Study of One Case

  • Antonio J. Tomeu-HardasmalEmail author
  • Alberto G. Salguero-Hidalgo
  • Manuel I. Capel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11339)


Adenocarcinomas are tumors that originate in the lining epithelium of the ducts that form the endocrine glands of the human body. Infiltrating breast and one of the most frequent neoplasms among female population, and the early detection of the disease is then fundamental and, for this reason, a profound knowledge of the biology of tumor at this phase is essential. Among the distinct tools that contribute to this knowledge, computational simulation is more frequently used every day. The availability of fast and efficient computations that allow the simulation of tumor dynamics in situ, under a wide range of different parameters, is an important research topic. Based on cellular automata, this paper proposes a generic simulation model for the Adenocarcinomas In Situ (CIS). We applied it to the breast ductal adenocarcinoma in situ (DCIS), modeling our cells with the genomic load that we currently know that the tumor starts, and proposing a numerical coding method for the genome that allows efficient computational management. We propose a parallelization scheme using data parallelism, and we show the acceleration achieved in multiple nodes of our cluster of processors.


Adenocarcionomas in situ Cellular automaton Data partition Parallel processing Speedup 


  1. 1.
    Altrock, P.M., Liu, L.L., Michor, F.: The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15, 730–745 (2015)CrossRefGoogle Scholar
  2. 2.
    Byrne, H.M., Alarcon, T., Owen, M.R., Webb, S.D., Maini, P.K.: Modelling aspects of cancer dynamics: a review. Philos. Trans. Roy. Soc. 364(1843), 1563–1578 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Byrne, H.M.: Dissecting cancer through mathematics: from the cell to the animal model. Nat. Rev. Cancer 10, 221–230 (2010)CrossRefGoogle Scholar
  4. 4.
    Davis, M., Sigal, R., Weyuker, E.: Computability, Complexity and Languages. Academic Press, Cambridge (1994)Google Scholar
  5. 5.
    Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation. Birkhäuser, Boston (2005)zbMATHGoogle Scholar
  6. 6.
    Edelman, L.B., Eddy, J.A., Price, N.D.: In silico models of cancer. Syst. Biol. Med. Adv. Rev. 2, 438–439 (2010)Google Scholar
  7. 7.
    Enderling, H., Chaplain, M., Anderson, A., Vaidya, J.: A mathematical model of breast cancer development, local treatment and recurrence. J. Theor. Biol. 246(2), 245–259 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Erbas, B., Provenzano, E., Armes, J., Gertig, D.: The natural history of ductal carcinoma in situ of the breast: a review. Breast Cancer Res. Treat. 97(2), 135–144 (2006)CrossRefGoogle Scholar
  9. 9.
    Gatenby, R.A., Gawlinski, E.T.: A reaction-diffusion model of cancer invasion. Cancer Res. 56(24), 5745–5753 (1996)Google Scholar
  10. 10.
    Giordano, A., et al.: Parallel execution of cellular automata through space partitioning: the landslide simulation Sciddicas3-Hex case study. In: Proceeding of 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), pp. 505–510 (2017)Google Scholar
  11. 11.
    Gevertz, J.L., Gillies, G.T., Torquato, S.: Simulating tumor growth in confined heterogeneous environments. Phys. Biol. 5(3), 036010 (2008)CrossRefGoogle Scholar
  12. 12.
    Kam, Y., Rejniak, K.A., Anderson, A.R.A.: Cellular modeling of cancer invasion: integration of in silico and in vitro approaches. J. Cell. Physiol. 227(2), 431–438 (2012)CrossRefGoogle Scholar
  13. 13.
    Monteagudo, A., Santos, J.: Studying the capability of different cancer hallmarks to initiate tumor growth using a cellular automaton simulation. Application in a cancer stem cell context. Biosystems 115, 46–58 (2014)CrossRefGoogle Scholar
  14. 14.
    Norton, K.-A., Wininger, M., Bhanot, G., Ganesan, S., Barnardh, N., Shinbrotb, T.: A 2D mechanistic model of breast ductal carcinoma in situ (DCIS) morphology and progression. J. Theor. Biol. 263(4), 393–406 (2009)CrossRefGoogle Scholar
  15. 15.
    Salguero-Hidalgo, A.G., Capel-Tunon, M.I., Tomeu-Hardasmal, A.J.: Parallel cellular automaton tumor growth model. In: Proceedings of 12th International Conference on Practical Applications of Computational Biology and Bioinformatics (to appear)Google Scholar
  16. 16.
    Silva, A.S., Gatenby, R.A., Gillies, R.J., Yunesa, J.A.: A quantitative theoretical model for the development of malignancy in ductal carcinoma in situ. J. Theor. Biol. 262(4), 601–613 (2009)CrossRefGoogle Scholar
  17. 17.
    Sottoriva, A., et al.: Cancer stem cell tumor model reveals invasive morphology and increased phenotypical heterogeneity. Cancer Res. 70(1), 46–56 (2010)CrossRefGoogle Scholar
  18. 18.
    Tomeu-Hardasmal, A.J., Salguero-Hidalgo, A.G., Capel-Tunon, M.I.: Speeding up tumor growth simulations using parallel programming and cellular automata. IEEE Lat. Am. Trans. 14(11), 4603–4619 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Antonio J. Tomeu-Hardasmal
    • 1
    Email author
  • Alberto G. Salguero-Hidalgo
    • 1
  • Manuel I. Capel
    • 2
  1. 1.Department of Computer ScienceUniversity of CádizPuerto RealSpain
  2. 2.Department of Software EngineeringUniversity of GranadaGranadaSpain

Personalised recommendations