Advertisement

Understanding the Indigenous Seed Microbiota to Design Bacterial Seed Treatments

  • Birgit Wassermann
  • Eveline Adam
  • Tomislav Cernava
  • Gabriele BergEmail author
Chapter

Abstract

Within millennia of domestication, crops and their seeds underwent traceably different adaptive trends, allowing rapid speciation and divergence that lead to phenotypic and genotypic distinction to their wild ancestors. Promoted by these dynamic processes, also the microbiotas have secretly coevolved with the host plants. Recent studies revealed an unexpected microbial diversity and abundance within seeds with bacterial endophytes as symbiotic components. Soil type, climate, geography and plant genotype were identified as main drivers of the seed microbiota. In addition, domestication and intensive agricultural management changed the seed microbiota. This resulted in a loss of diversity, which has consequences for one health-related issues. In order to restore microbial diversity, bacterial seed treatments can be designed. They can be reconstructed based on the rich diversity of seeds of wild ancestors or other native plants. The resulting seed biologicals can be harnessed for sustainable agricultural approaches by improving stress tolerance and resilience of modern crops.

Keywords

Seed microbiome Holobiont Domestication One health Seed biologicals 

References

  1. Adam E, Bernhart M, Müller H, Winkler J, Berg G (2018) The Cucurbita pepo seed microbiome: genotype-specific composition and implications for breeding. Plant Soil 422(1–2):35–49CrossRefGoogle Scholar
  2. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681PubMedCrossRefGoogle Scholar
  3. Barret M, Briand M, Bonneau S, Préveaux A, Valière S, Bouchez O, Jacques MA (2015) Emergence shapes the structure of the seed microbiota. Appl Environ Microbiol 81(4):1257–1266PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography, and, evolution of dormancy and germination. Elsevier, San DiegoGoogle Scholar
  5. Bender SF, Heijden MG (2015) Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J Appl Ecol 52(1):228–239CrossRefGoogle Scholar
  6. Berg G (2016) Analysing the plant microbiome for control of pathogens. In: Recent trends in PGPR research for sustainable crop productivity, p 45Google Scholar
  7. Berg G, Raaijmakers JM (2018) Saving seed microbiomes. ISME J 12:1167–1170PubMedCrossRefGoogle Scholar
  8. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–13CrossRefGoogle Scholar
  9. Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7(11):1673–1685PubMedCrossRefGoogle Scholar
  10. Berg G, Köberl M, Rybakova D, Müller H, Grosch R, Smalla K (2017) Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol Ecol 93(5)Google Scholar
  11. Bever JD, Mangan SA, Alexander HM (2015) Maintenance of plant species diversity by pathogens. Annu Rev Ecol Evol Syst 46:305–325CrossRefGoogle Scholar
  12. Blaser MJ (2014) Missing microbes: how the overuse of antibiotics is fueling our modern plagues. Macmillan, LondonGoogle Scholar
  13. Blaser MJ (2017) The theory of disappearing microbiota and the epidemics of chronic diseases. Nat Rev Immunol 17(8):461PubMedCrossRefGoogle Scholar
  14. Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330(6001):192–196PubMedCrossRefGoogle Scholar
  15. Castañeda-Álvarez NP, Khoury CK, Achicanoy HA, Bernau V, Dempewolf H, Eastwood RJ, Guarino L, Harker RH, Jarvis A, Maxted N, Müller JV (2016) Global conservation priorities for crop wild relatives. Nat Plants 2(4):16022PubMedCrossRefGoogle Scholar
  16. Chen H, Wu H, Yan B, Zhao H, Liu F, Zhang H, Liang Z (2018) Core microbiome of medicinal plant Salvia miltiorrhiza seed: a rich reservoir of beneficial microbes for secondary metabolism? Int J Mol Sci 19(3):672PubMedCentralCrossRefGoogle Scholar
  17. Darrasse A, Darsonval A, Boureau T, Brisset MN, Durand K, Jacques MA (2010) Transmission of plant-pathogenic bacteria by nonhost seeds without induction of an associated defense reaction at emergence. Appl Environ Microbiol 76(20):6787–6796PubMedPubMedCentralCrossRefGoogle Scholar
  18. Darwin C (1968 [1859]) On the origin of species by means of natural selection. Murray Google Scholar, LondonGoogle Scholar
  19. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Biddinger SB (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559PubMedCrossRefGoogle Scholar
  20. Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418(6898):700PubMedCrossRefGoogle Scholar
  21. Doornbos RF, van Loon LC, Bakker PA (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32(1):227–243CrossRefGoogle Scholar
  22. Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  23. Flandroy L, Poutahidis T, Berg G, Clarke G, Dao MC, Decaestecker E, Sanz Y (2018) The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci Total Environ 627:1018–1038PubMedCrossRefGoogle Scholar
  24. Garrison VH, Shinn EA, Foreman WT, Griffin DW, Holmes CW, Kellogg CA, Smith GW (2003) African and Asian dust: from desert soils to coral reefs. AIBS Bulletin 53(5):469–480Google Scholar
  25. Germida J, Siciliano S (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soils 33(5):410–415CrossRefGoogle Scholar
  26. Glassner H, Zchori-Fein E, Yaron S, Sessitsch A, Sauer U, Compant S (2018) Bacterial niches inside seeds of Cucumis melo L. Plant Soil 422(1–2):101–113CrossRefGoogle Scholar
  27. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68PubMedCrossRefGoogle Scholar
  28. Gloria TC, Bonneau S, Bouchez O, Genthon C, Briand M, Jacques MA, Barret M (2018) Functional microbial features driving community assembly during seed germination and emergence. Front Plant Sci 9:902CrossRefGoogle Scholar
  29. Gruber K (2017) Agrobiodiversity: the living library. Nature 544(7651):S8–S10PubMedCrossRefGoogle Scholar
  30. Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Mäkelä MJ, Vartiainen E, Vartiainen E (2012) Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci 109(21):8334–8339PubMedCrossRefGoogle Scholar
  31. Hardoim PR, Hardoim CC, Van Overbeek LS, Van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7(2):e30438PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320PubMedPubMedCentralCrossRefGoogle Scholar
  33. Harlan RL (1973) Analysis of coupled heat fluid transport in partially frozen soil. Water Resour Res 9(5):1314–1323CrossRefGoogle Scholar
  34. Huang Y, Zhang M, Deng Z, Cao L (2017) Evaluation of probiotic diversity from soybean (Glycine max) seeds and sprouts using Illumina-based sequencing method. Probiotics Antimicrob Proteins 10:293–298CrossRefGoogle Scholar
  35. Irizarry I, White JF (2017) Application of bacteria from noncultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton. J Appl Microbiol 122(4):1110–1120PubMedCrossRefGoogle Scholar
  36. Jack AL, Nelson EB (2018) A seed-recruited microbiome protects developing seedlings from disease by altering homing responses of Pythium aphanidermatum zoospores. Plant Soil 422(1–2):209–222CrossRefGoogle Scholar
  37. Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, Andersson AF (2014) Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 63(4):559–566PubMedCrossRefGoogle Scholar
  38. Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6(6):e20396PubMedPubMedCentralCrossRefGoogle Scholar
  39. Johnston-Monje D, Lundberg DS, Lazarovits G, Reis VM, Raizada MN (2016) Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant Soil 405(1–2):337–355CrossRefGoogle Scholar
  40. Khalaf EM, Raizada MN (2016) Taxonomic and functional diversity of cultured seed associated microbes of the cucurbit family. BMC Microbiol 16(1):131PubMedPubMedCentralCrossRefGoogle Scholar
  41. Khalaf EMK, Raizada MN (2018) Bacterial seed endophytes of domesticated cucurbits antagonize fungal and oomycete pathogens including powdery mildew. Front Microbiol 9:42PubMedPubMedCentralCrossRefGoogle Scholar
  42. Klaedtke S, Jacques MA, Raggi L, Préveaux A, Bonneau S, Negri V, Barret M (2016) Terroir is a key driver of seed-associated microbial assemblages. Environ Microbiol 18(6):1792–1804PubMedCrossRefGoogle Scholar
  43. Laforest-Lapointe I, Paquette A, Messier C, Kembel SW (2017) Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546(7656):145PubMedCrossRefGoogle Scholar
  44. Leck MA, Parker VT, Simpson RL (eds) (2008) Seedling ecology and evolution. Cambridge University Press, CambridgeGoogle Scholar
  45. Lewis SL, Maslin MA (2015) Defining the anthropocene. Nature 519(7542):171PubMedCrossRefGoogle Scholar
  46. Links MG, Demeke T, Gräfenhan T, Hill JE, Hemmingsen SM, Dumonceaux TJ (2014) Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds. New Phytol 202(2):542–553PubMedPubMedCentralCrossRefGoogle Scholar
  47. Liu Y, Zuo S, Zou Y, Wang J, Song W (2013) Investigation on diversity and population succession dynamics of endophytic bacteria from seeds of maize (Zea mays L., Nongda108) at different growth stages. Ann Microbiol 63(1):71–79CrossRefGoogle Scholar
  48. Malinich EA, Bauer CE (2018) The plant growth promoting bacterium Azospirillum brasilense is vertically transmitted in Phaseolus vulgaris (common bean). Symbiosis 76(2):97–108Google Scholar
  49. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663PubMedCrossRefGoogle Scholar
  50. Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, Berninger T, Naveed M, Sheibani-Tezerji R, von Maltzahn G, Sessitsch A (2017) A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol 8:11PubMedPubMedCentralGoogle Scholar
  51. Mormile BW (2016) Influence of seed microbiome on fitness of Epichloë infected tall fescue seedlings. Doctoral dissertation, Southern Connecticut State UniversityGoogle Scholar
  52. Nelson EB (2018) The seed microbiome: origins, interactions, and impacts. Plant Soil 422(1–2):7–34CrossRefGoogle Scholar
  53. Oerke EC (2006) Crop losses to pests. J Agric Sci 144(1):31–43CrossRefGoogle Scholar
  54. Oliver MA, Gregory PJ (2015) Soil, food security and human health: a review. Eur J Soil Sci 66(2):257–276CrossRefGoogle Scholar
  55. Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90(6):635–644PubMedCrossRefGoogle Scholar
  56. Pérez-Jaramillo JE, Carrión VJ, Bosse M, Ferrão LF, de Hollander M, Garcia AA, Ramírez CA, Mendes R, Raaijmakers JM (2017) Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J 11(10):2244PubMedPubMedCentralCrossRefGoogle Scholar
  57. Pitzschke A (2016) Developmental peculiarities and seed-borne endophytes in quinoa: omnipresent, robust bacilli contribute to plant fitness. Front Microbiol 7:2PubMedPubMedCentralCrossRefGoogle Scholar
  58. Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457(7231):843PubMedCrossRefGoogle Scholar
  59. Qin Y, Pan X, Yuan Z (2016) Seed endophytic microbiota in a coastal plant and phytobeneficial properties of the fungus Cladosporium cladosporioides. Fungal Ecol 24:53–60CrossRefGoogle Scholar
  60. Raaijmakers JM, Mazzola M (2016) Soil immune responses. Science 352(6292):1392–1393PubMedCrossRefGoogle Scholar
  61. Rahman MM, Flory E, Koyro HW, Abideen Z, Schikora A, Suarez C, Cardinale M (2018) Consistent associations with beneficial bacteria in the seed endosphere of barley (Hordeum vulgare L.). Syst Appl Microbiol 41(4):386–398PubMedCrossRefGoogle Scholar
  62. Remus-Emsermann MN, Schlechter RO (2018) Phyllosphere microbiology: at the interface between microbial individuals and the plant host. New Phytol 218(4):1327–1333PubMedCrossRefGoogle Scholar
  63. Rezki S, Campion C, Iacomi-Vasilescu B, Preveaux A, Toualbia Y, Bonneau S, Briand M, Laurent E, Hunault G, Simoneau P, Jacques MA (2016) Differences in stability of seed-associated microbial assemblages in response to invasion by phytopathogenic microorganisms. PeerJ 4:e1923PubMedPubMedCentralCrossRefGoogle Scholar
  64. Rezki S, Campion C, Simoneau P, Jacques MA, Shade A, Barret M (2018) Assembly of seed-associated microbial communities within and across successive plant generations. Plant Soil 422(1–2):67–79CrossRefGoogle Scholar
  65. Rybakova D, Mancinelli R, Wikström M, Birch-Jensen AS, Postma J, Ehlers RU, Goertz S, Berg G (2017) The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens. Microbiome 5(1):104PubMedPubMedCentralCrossRefGoogle Scholar
  66. Sánchez-Cañizares C, Jorrín B, Poole PS, Tkacz A (2017) Understanding the holobiont: the interdependence of plants and their microbiome. Curr Opin Microbiol 38:188–196PubMedCrossRefGoogle Scholar
  67. Sánchez-López AS, Thijs S, Beckers B, González-Chávez MC, Weyens N, Carrillo-González R, Vangronsveld J (2018) Community structure and diversity of endophytic bacteria in seeds of three consecutive generations of Crotalaria pumila growing on metal mine residues. Plant Soil 422(1–2):51–66CrossRefGoogle Scholar
  68. Schiltz S, Gaillard I, Pawlicki-Jullian N, Thiombiano B, Mesnard F, Gontier E (2015) A review: what is the spermosphere and how can it be studied? J Appl Microbiol 119(6):1467–1481PubMedCrossRefGoogle Scholar
  69. Shade A, Jacques MA, Barret M (2017) Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr Opin Microbiol 37:15–22PubMedCrossRefGoogle Scholar
  70. Truyens S, Weyens N, Cuypers A, Vangronsveld J (2014) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7:40–50CrossRefGoogle Scholar
  71. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027PubMedCrossRefGoogle Scholar
  72. Van Der Heijden MG, De Bruin S, Luckerhoff L, Van Logtestijn RS, Schlaeppi K (2016) A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J 10(2):389PubMedCrossRefGoogle Scholar
  73. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206CrossRefGoogle Scholar
  74. Vannier N, Mony C, Bittebiere AK, Michon-Coudouel S, Biget M, Vandenkoornhuyse P (2018) A microorganisms’ journey between plant generations. Microbiome 6(1):79PubMedPubMedCentralCrossRefGoogle Scholar
  75. Verma SK, White JF (2018) Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.). J Appl Microbiol 124(3):764–778PubMedCrossRefGoogle Scholar
  76. Walitang DI, Kim K, Madhaiyan M, Kim YK, Kang Y, Sa T (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC Microbiol 17(1):209PubMedPubMedCentralCrossRefGoogle Scholar
  77. Wall DH, Nielsen UN, Six J (2015) Soil biodiversity and human health. Nature 528(7580):69PubMedGoogle Scholar
  78. White JF, Kingsley KI, Kowalski KP, Irizarry I, Micci A, Soares MA, Bergen MS (2018) Disease protection and allelopathic interactions of seed-transmitted endophytic pseudomonads of invasive reed grass (Phragmites australis). Plant Soil 422(1–2):195–208CrossRefGoogle Scholar
  79. Zachow C, Müller H, Tilcher R, Donat C, Berg G (2013) Catch the best: novel screening strategy to select stress protecting agents for crop plants. Agronomy 3(4):794–815CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birgit Wassermann
    • 1
  • Eveline Adam
    • 1
  • Tomislav Cernava
    • 1
  • Gabriele Berg
    • 1
    Email author
  1. 1.Institute of Environmental BiotechnologyGraz University of TechnologyGrazAustria

Personalised recommendations