Advertisement

Microbial Endophytes of Maize Seeds and Their Application in Crop Improvements

  • Sandip Chowdhury
  • Rusi Lata
  • Ravindra N. Kharwar
  • Surendra K. Gond
Chapter

Abstract

Maize is one of the main cereal crops grown all over the world. The presence of microbial endophytes which reside asymptomatically inside maize seeds may influence the yield and quality of crop. The present review concentrates on underexplored endophytes, such as seed-borne bacterial and fungal endophytes. The review encompasses the role of maize seed’s endophytes in enhancing crop efficiency, the nature of vertical transmission and secondary metabolites production, their belowground function, and the aboveground response. The diversity of endophytes in maize seed is discussed in detail focusing also on methodology applied for their isolation. This review may render help for the researchers working on the improvement of crops modulated through seed endophytes.

Keywords

Zea mays Endophytism Antimicrobial Plant growth promotion Gene expression 

Notes

Acknowledgment

Authors are thankful to the Department of Botany, MMV, Banaras Hindu University for providing necessary facility. RL acknowledges UGC New Delhi, for Junior Research Fellowship. Financial support from SERB, New Delhi (EEQ/2016/000555), is greatly acknowledged. RNK expresses his thanks to SERB (DST), New Delhi, for project (SB/EMEQ-121/2014) and to Head & Coordinator, CAS and DST-FIST in Botany, Institute of Science, BHU, Varanasi, for facilities.

References

  1. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saudi Univ Sci 26(1):1–20CrossRefGoogle Scholar
  2. Bacilio-Jiménez M, Aguilar-Flores S, del Valle MV et al (2001) Endophytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense. Soil Biol Biochem 33(2):167–172CrossRefGoogle Scholar
  3. Bacon CW, Hinton DM (1996) Symptomless endophytic colonization of maize by Fusarium moniliforme. Can J Bot 74:1195–1202CrossRefGoogle Scholar
  4. Bacon CW, Yates IE, Hinton DM et al (2001) Biological control of Fusarium moniliforme in maize. Environ Health Perspect 109(Suppl 2):325PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bacon CW, Palencia ER, Hinton DM (2015) Abiotic and biotic plant stress-tolerant and beneficial secondary metabolites produced by endophytic Bacillus species. In: Arora N (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 163–177Google Scholar
  6. Barea JM, Pozo MJ, Azcon R et al (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778PubMedCrossRefGoogle Scholar
  7. Berg MP, Kiers E, Driessen G et al (2010) Adapt or disperse: understanding species persistence in a changing world. Glob Chang Biol 16(2):587–598CrossRefGoogle Scholar
  8. Block CC, Hill JH, McGee DC (1998) Seed transmission of Pantoea stewartii in field and sweet corn. Plant Dis 82(7):775–780PubMedCrossRefGoogle Scholar
  9. Bodhankar S, Grover M, Hemanth S et al (2017) Maize seed endophytic bacteria: dominance of antagonistic, lytic enzyme-producing Bacillus spp. 3 Biotech 7(4):232PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cankar K, Kraigher H, Ravnikar M et al (2005) Bacterial endophytes from seeds of Norway spruce (Piceaabies L. Karst). FEMS Microbiol Lett 244(2):341–345PubMedCrossRefGoogle Scholar
  11. Chelius MK, Triplett EW (2000a) Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L. Appl Environ Microbiol 66(2):783–787PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chelius MK, Triplett EW (2000b) Diazotrophic endophytes associated with maize. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Norfolk, pp 779–792Google Scholar
  13. Christiansen-Weniger C, Vanderleyden J (1994) Ammonium-excreting Azospirillum sp. become intracellularly established in maize (Zea mays) para-nodules. Biol Fertil Soils 17(1):1–8CrossRefGoogle Scholar
  14. Cohen AC, Travaglia CN, Bottini R et al (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87(5):455–462CrossRefGoogle Scholar
  15. Compant S, Mitter B, Colli-Mull JG et al (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62(1):188–197PubMedCrossRefGoogle Scholar
  16. Cosme M, Lu J, Erb M et al (2016) A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling. New Phytol 211(3):1065–1076PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cottyn B, Regalado E, Lanoot B et al (2001) Bacterial populations associated with rice seed in the tropical environment. Phytopathology 91(3):282–292PubMedCrossRefGoogle Scholar
  18. Donald TW, Shoshannah ROTH, Deyrup ST et al (2005) A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol Res 109(5):610–618CrossRefGoogle Scholar
  19. Dong Y, Glasner JD, Blattner FR et al (2001) Genomic interspecies microarray hybridization: rapid discovery of three thousand genes in the maize endophyte, Klebsiella pneumoniae 342, by microarray hybridization with Escherichia coli K12 open reading frames. Appl Environ Microbiol 67(4):1911–1921PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dunleavy JM (1989) Curtobacterium plantarum sp. nov. is ubiquitous in plant leaves and is seed transmitted in soybean and corn. Int J Syst Evol Microbiol 39(3):240–249Google Scholar
  21. Elmer WH (2001) Seeds as vehicles for pathogen importation. Biol Invasions 3:263–271CrossRefGoogle Scholar
  22. Ernst M, Mendgen KW, Wirsel SG (2003) Endophytic fungal mutualists: seed-borne Stagonospora spp. enhance reed biomass production in axenic microcosms. Mol Plant-Microbe Interact 16(7):580–587PubMedCrossRefGoogle Scholar
  23. Ferreira A, Quecine MC, Lacava PT et al (2008) Diversity of endophytic bacteria from eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287:8–14PubMedCrossRefGoogle Scholar
  24. Fisher PJ, Petrini O, Scott HL (1992) The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytol 122(2):299–305CrossRefGoogle Scholar
  25. Gond SK, Bergen MS, Torres MS et al (2015a) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defense gene expression in maize. Microbiol Res 172:79–87PubMedCrossRefGoogle Scholar
  26. Gond SK, Torres MS, Bergen MS et al (2015b) Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans. Lett Appl Microbiol 60(4):392–399PubMedCrossRefGoogle Scholar
  27. Guan KL (2009) Seed physiological ecology (in Chinese). Chinese Agricultural Press, Beijing, pp 1–7Google Scholar
  28. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471CrossRefGoogle Scholar
  29. Hinton DM, Bacon CW (1995) Enterobacter cloacae is an endophytic symbiont of corn. Mycopathologia 129(2):117–125PubMedCrossRefGoogle Scholar
  30. Hodgson S, Cates C, Hodgson J et al (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4(8):1199–1208PubMedPubMedCentralCrossRefGoogle Scholar
  31. Johnston-Monje D, Raizada MN (2011) Plant and endophyte relationships: nutrient management. In: Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, pp 713–727CrossRefGoogle Scholar
  32. Kaga H, Mano H, Tanaka F et al (2009) Rice seeds as sources of endophytic bacteria. Microb Environ 24:154–162CrossRefGoogle Scholar
  33. Kremer RJ (1987) Identity and properties of bacteria inhabiting seeds of selected broadleaf weed species. Microb Ecol 14(1):29–37PubMedCrossRefGoogle Scholar
  34. Lata R, Chowdhury S, Gond SK, White JFJ (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66(4):268–276CrossRefGoogle Scholar
  35. Liu Y, Zuo S, Xu L et al (2012) Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines. Arch Microbiol 194(12):1001–1012PubMedCrossRefGoogle Scholar
  36. Liu Y, Zuo S, al ZY (2013) Investigation on diversity and population succession dynamics of endophytic bacteria from seeds of maize (Zea mays L., Nongda108) at different growth stages. Ann Microbiol 63(1):71–79CrossRefGoogle Scholar
  37. Liu Y, Wang R, Li Y et al (2017) High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of “Beijing” hybrid maize planted in China. Plant Growth Regul 81(2):317–324CrossRefGoogle Scholar
  38. Mano H, Tanaka F, Watanabe A et al (2006) Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microb Environ 21:86–100CrossRefGoogle Scholar
  39. Martínez-Medina A, Fernandez I, Lok GB et al (2017) Shifting from priming of salicylic acid to jasmonic acid regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol 213(3):1363–1377PubMedCrossRefGoogle Scholar
  40. Matsuoka Y, Vigouroux Y, Goodman MM et al (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084PubMedCrossRefGoogle Scholar
  41. Mayerhofer MS, Kernaghan G, Harper KA (2012) The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128PubMedCrossRefGoogle Scholar
  42. Miedaner T, Bolduan C, Melchinger AE (2010) Aggressiveness and mycotoxin production of eight isolates each of Fusarium graminearum and Fusarium verticillioides for ear rot on susceptible and resistant early maize inbred lines. Eur J Plant Pathol 127(1):113–123CrossRefGoogle Scholar
  43. Montanez A, Blanco AR, Barlocco C et al (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28CrossRefGoogle Scholar
  44. Mousa WK, Shearer CR, Limay-Rios V et al (2015) Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation. Front Plant Sci 6:805PubMedPubMedCentralGoogle Scholar
  45. Mundt JO, Hinkle NF (1976) Bacteria within ovules and seeds. Appl Environ Microbiol 32:694–698PubMedPubMedCentralGoogle Scholar
  46. Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309PubMedCrossRefGoogle Scholar
  47. Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190(3):783–793PubMedCrossRefGoogle Scholar
  48. Orole OO, Adejumo TO (2011) Bacterial and fungal endophytes associated with grains and roots of maize. J Ecol Nat Environ 3(9):298–303Google Scholar
  49. Palus JA, Borneman J, Ludden PW et al (1996) Isolation and characterization of endophytic diazotrophs from Zea mays L. and Zea luxurians Iltis and Doebley. Plant Soil 186:135–142CrossRefGoogle Scholar
  50. Peay KG, Bidartondo MI, Elizabeth Arnold A (2010) Not every fungus is everywhere: scaling to the biogeography of fungal–plant interactions across roots, shoots and ecosystems. New Phytol 185(4):878–882PubMedCrossRefGoogle Scholar
  51. Ranum P, PeñaRosas JP, GarciaCasal MN (2014) Global maize production, utilization, and consumption. Ann N Y Acad Sci 1312(1):105–112PubMedCrossRefGoogle Scholar
  52. Redman RS, Sheehan KB, Stout RG et al (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298(5598):1581–1581PubMedCrossRefGoogle Scholar
  53. Rijavec T, Lapanje A, Dermastia M et al (2007) Isolation of bacterial endophytes from germinated maize kernels. Can J Microbiol 53:802–808PubMedCrossRefGoogle Scholar
  54. Rojas CM, Senthil-Kumar M, Tzin V et al (2014) Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Recent Dev Plant Sci 5:17Google Scholar
  55. Rosenblueth M, López-López A, Martínez J, Rogel MA, Toledo I, Martínez-Romero E (2010) Seed bacterial endophytes: common genera, seed-to-seed variability and their possible role in plants. In: XXVIII international horticultural congress on science and horticulture for people (IHC2010): international symposium on 938, pp 39–48Google Scholar
  56. Sandhya V, Shrivastava M, Ali SZ et al (2017) Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russ Agric Sci 43(1):22–34CrossRefGoogle Scholar
  57. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340PubMedCrossRefGoogle Scholar
  58. Sheibani-Tezerji R, Naveed M, Jehl MA et al (2015) The genomes of closely related Pantoea ananatis maize seed endophytes having different effects on the host plant differ in secretion system genes and mobile genetic elements. Front Microbiol 6:440PubMedPubMedCentralCrossRefGoogle Scholar
  59. Song Z, Kennedy PG, Liew FJ et al (2017) Fungal endophytes as priority colonizers initiating wood decomposition. Funct Ecol 31(2):407–418CrossRefGoogle Scholar
  60. Strobel G, Daisy B, Castillo U et al (2004) Natural products from endophytic microorganisms. J Nat Prod 67(2):257–268PubMedCrossRefGoogle Scholar
  61. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19(1):1–30CrossRefGoogle Scholar
  62. Sullivan TJ, Rodstrom J, Vandop J et al (2007) Symbiont-mediated changes in Lolium arundinaceum inducible defenses: evidence from changes in gene expression and leaf composition expression and leaf composition. New Phytol 176:673–679PubMedCrossRefGoogle Scholar
  63. Tripathi A, Joshi N, Kumar A (2016) Maize production technologies in India-a review. Octa J Environ Res 4(3):234–251Google Scholar
  64. Wang JL, Li T, Liu GY et al (2016) Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep 6:22028PubMedPubMedCentralCrossRefGoogle Scholar
  65. Wilkes G (2004) Corn, strange and marvelous: but is a definitive origin known? In: Smith CW, Betran J, Runge ECA (eds) Corn: origin, history, technology, and production. Wiley, Hoboken, NJ, pp 3–63Google Scholar
  66. Yates IE, Bacon CW, Hinton DM (1997) Effects of endophytic infection by Fusarium moniliforme on corn growth and cellular morphology. Plant Dis 81:723–728PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sandip Chowdhury
    • 1
  • Rusi Lata
    • 1
  • Ravindra N. Kharwar
    • 2
  • Surendra K. Gond
    • 1
  1. 1.Department of Botany, MMVBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of BotanyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations