Advertisement

Agriculturally Important Biosynthetic Features of Endophytic Microorganisms

  • S. Sreejith
  • R. Aswani
  • E. K. RadhakrishnanEmail author
Chapter

Abstract

Endophytic microorganisms mainly include bacteria and fungi that colonize the plant internally without causing any adverse effect. Due to the mutualistic association with microorganisms accommodated internally, plants are benefited significantly in growth and resistance against various pathogens. The multiple plant-beneficial functions of endophytes like plant growth promotion, biocontrol and alleviation of abiotic stress are mediated through the production of diverse biomolecules. Hence there are immense possibilities to explore endophytes for various agricultural applications to substitute the use of agrochemicals. Endophytology with concepts of holobiome (plant and endophytes) and hologenome (genome of plant and endophytes) is gaining acceptance in recent years, both in basic and applied sciences. The current chapter describes biosynthetic features of endophytes especially those from seed endophytes, which are least investigated.

Keywords

Endophytic microorganisms Plant-microbe interactions Plant growth promotion Bioactive metabolites 

References

  1. Anisha C, Radhakrishnan EK (2015) Gliotoxin-producing endophytic Acremonium sp. from Zingiber officinale found antagonistic to soft rot pathogen Pythium myriotylum. Appl Biochem Biotechnol 175(7):3458–3467PubMedCrossRefPubMedCentralGoogle Scholar
  2. Anisha C, Radhakrishnan EK (2017) Metabolite analysis of endophytic fungi from cultivars of Zingiber officinale Rosc identifies myriad of bioactive compounds including tyrosol. 3 Biotech 7(2):146PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anisha C, Sachidanandan P, Radhakrishnan EK (2018a) Endophytic Paraconiothyrium sp. from Zingiber officinale Rosc. displays broad-spectrum antimicrobial activity by production of danthron. Curr Microbiol 75(3):343–352PubMedCrossRefPubMedCentralGoogle Scholar
  4. Anisha C, Jishma P, Sasi Bilzamol V, Radhakrishnan EK (2018b) Effect of ginger endophyte Rhizopycnis vagum on rhizome bud formation and protection from phytopathogens. Biocatal Agric Biotechnol 14:116–119CrossRefGoogle Scholar
  5. Aranda FJ, Teruel JA, Ortiz A (2005) Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys Acta Biomembr 1713(1):51–56CrossRefGoogle Scholar
  6. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31(3):488–494PubMedCrossRefPubMedCentralGoogle Scholar
  7. Aswathy AJ, Jasim B, Jyothis M, Radhakrishnan EK (2013) Identification of two strains of Paenibacillus sp. as indole 3 acetic acid-producing rhizome-associated endophytic bacteria from Curcuma longa. 3 Biotech 3(3):219–224PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bernabeu PR, Pistorio M, Torres-tejerizo G, Santos PEL, Galar ML, Boiardi JL et al (2015) Colonization and plant growth-promotion of tomato by Burkholderia tropica. Sci Hortic (Amsterdam) 191:113–120.  https://doi.org/10.1016/j.scienta.2015.05.014CrossRefGoogle Scholar
  9. Bhardwaj A, Agrawal P (2014) A review fungal endophytes: as a store house of bioactive compound. World J Pharm Pharm Sci 3:228–237Google Scholar
  10. Bohm M, Hurek T, Reinhold-Hurek B (2007) Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72. Mol Plant-Microbe Interact 20:526–533PubMedCrossRefPubMedCentralGoogle Scholar
  11. Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma L-J et al (2017) Ecology and genomic insights into plant-pathogenic and plant-non pathogenic endophytes. Annu Rev Phytopathol 55:61–83.  https://doi.org/10.1146/annurev-phyto-080516-035641CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chee-Sanford JC, Williams MM, Davis AS, Sims GK (2006) Do microorganisms influence seed-bank dynamics. Weed Sci 54:575–587.  https://doi.org/10.1614/WS-05-055R.1CrossRefGoogle Scholar
  13. Chen C, Bauske EM, Musson G, Rodriguezkabana R, Kloepper JW (1995) Biological control of fusarium wilt on cotton by use of endophytic bacteria. Biol Control 5:83–91.  https://doi.org/10.1006/bcon.1995.1009CrossRefGoogle Scholar
  14. Chi F, Shen S, Cheng H, Jing Y, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth. Physiology 71(11):7271–7278.  https://doi.org/10.1128/AEM.71.11.7271CrossRefGoogle Scholar
  15. Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37(10):1970–1974CrossRefGoogle Scholar
  16. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005a) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959PubMedPubMedCentralCrossRefGoogle Scholar
  17. Compant S, Reiter B, Nowak J, Sessitsch A, Clément C, Barka EA (2005b) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693PubMedPubMedCentralCrossRefGoogle Scholar
  18. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  19. Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cope-Selby N, Cookson A, Squance M, Donnison I, Flavell R, Farrar K (2017) Endophytic bacteria in Miscanthus seed: implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioeng 9:57–77.  https://doi.org/10.1111/gcbb.12364CrossRefGoogle Scholar
  21. Coutinho BG, Licastro D, Mendonça-Previato L, Camara M, Venturi V (2014) Plant-influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Mol Plant-Microbe Interact 28:10–21.  https://doi.org/10.1094/MPMI-07-14-0225-RCrossRefGoogle Scholar
  22. Das S, Dey P, Roy D et al (2018) N-acetyl-D-glucosamine production by a chitinase of marine fungal origin : a case study of potential industrial significance for valorization of waste chitins. Appl Biochem Biotechnol 187(1):407–423Google Scholar
  23. De Bary A (1866) Morphologie und Physiologie Pilze, Flechten, und myxomyceten. In: Hofmeister’s handbook of physiological botany, vol 2. Verlag Von Wilhelm Engelmann, LeipzigGoogle Scholar
  24. Debois D, Ongena M, Cawoy H, De Pauw E (2013) MALDI-FTICR MS imaging as a powerful tool to identify Paenibacillus antibiotics involved in the inhibition of plant pathogens. J Am Soc Mass Spectrom 24(8):1202–1213PubMedCrossRefPubMedCentralGoogle Scholar
  25. Deng Q, Wang W, Sun L, Wang Y, Liao J, Xu D, Liu Y, Ye R, Gooneratne R (2017) A sensitive method for simultaneous quantitative determination of surfactin and iturin by LC-MS/MS. Anal Bioanal Chem 409(1):179–191PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dimkić I, Stanković S, Nišavić M, Petković M, Ristivojević P, Fira D, Berić T (2017) The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains. Front Microbiol 8:925PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dovana F, Mucciarelli M, Mascarello M, Fusconi A (2015) In vitro morphogenesis of Arabidopsis to search for novel endophytic fungi modulating plant growth. PLoS One 10(12):e0143353PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dubos RJ (1939) Studies on a bactericidal agent extracted from a soil Bacillus: I. Preparation of the agent. Its activity in vitro. J Exp Med 70(1):1PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fisher PJ, Petrini O, Lappin-Scott HM (1992) The distribution of some fungal and bacteria endophytes in maize (Zea mays L.). New Phytol 122:299–305CrossRefGoogle Scholar
  30. Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Badger JH, Durkin AS, Huot H, Shrivastava S, Kothari S, Dodson RJ, Mohamoud Y, Khouri H, Roesch LFW, Krogfelt KA, Struve C, Triplett EW, Methé BA (2008) Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4(7):1–18CrossRefGoogle Scholar
  31. Frikha-Gargouri O, Ben Abdallah D, Ghorbel I, Charfeddine I, Jlaiel L, Triki MA, Tounsi S (2017) Lipopeptides from a novel Bacillus methylotrophicus 39b strain suppress agrobacterium crown gall tumours on tomato plants. Pest Manag Sci 73(3):568–574PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gagne-Bourgue F, Aliferis KA, Seguin P, Rani M, Samson R, Jabaji S (2013) Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J Appl Microbiol 114:836–853.  https://doi.org/10.1111/jam.12088CrossRefPubMedPubMedCentralGoogle Scholar
  33. Garg N, Geetanjali (2007) Symbiotic nitrogen fixation in legume nodules: process and signalling. A review. Agron Sustain Dev 27:59–68CrossRefGoogle Scholar
  34. Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254.  https://doi.org/10.1016/j.funeco.2009.12.001CrossRefGoogle Scholar
  35. Geisen S, Kostenko O, Cnossen MC, ten Hooven FC, Vres B, van der Putten WH (2017) Seed and root endophytic fungi in a range expanding and a related plant species. Front Microbiol 8:1645PubMedPubMedCentralCrossRefGoogle Scholar
  36. Ginting RCB, Sukarno N, Widyastuti U et al (2013) Diversity of endophytic fungi from red ginger (Zingiber officinale Rosc.) plant and their inhibitory effect to Fusarium oxysporum plant pathogenic fungi. HAYATI J Biosci 20:127–137.  https://doi.org/10.4308/hjb.20.3.127CrossRefGoogle Scholar
  37. Godstime OC, Enwa FO, Augustina JO, Christopher EO (2014) Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens–a review. J Pharm Chem Biol Sci 2:77–85Google Scholar
  38. Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek 108:267–289.  https://doi.org/10.1007/s10482-015-0502-7CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gond SK, Bergen MS, Torres MS, White JF Jr (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87PubMedCrossRefPubMedCentralGoogle Scholar
  40. Gouda S, Das G, Sen SK, Shin H-S, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538PubMedPubMedCentralCrossRefGoogle Scholar
  41. Govindarajan M, Balandreau J, Kwon S-W, Weon H-Y, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37.  https://doi.org/10.1007/s00248-007-9247-9CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gu Q, Yang Y, Yuan Q, Shi G, Wu L, Lou Z, Huo R, Wu H, Borriss R, Gao X (2017) Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant pathogenic fungus Fusarium graminearum. Appl Environ Microbiol 83:AEM-01075CrossRefGoogle Scholar
  43. Hallmann J (2001) Plant interactions with endophytic bacteria. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant–pathogen associations. CABI, Wallingford, pp 87–119CrossRefGoogle Scholar
  44. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914.  https://doi.org/10.1139/m97-131CrossRefGoogle Scholar
  45. Hardoim PR, van Overbeek LS, Elsa v (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471CrossRefGoogle Scholar
  46. Hardoim PR, Hardoim CC, Van Overbeek LS, Van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7(2):e30438PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hassan SE-D (2017) Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Adv Res 8(6):687–695.  https://doi.org/10.1016/j.jare.2017.09.001CrossRefPubMedPubMedCentralGoogle Scholar
  48. Herrera SD, Grossi C, Zawoznik M, Groppa MD (2016) Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol Res 186–187:37–43.  https://doi.org/10.1016/j.micres.2016.03.002CrossRefGoogle Scholar
  49. Hodgson S, de Cates C, Hodgson J, Morley NJ, Sutton BC, Gange AC (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4:1199–1208.  https://doi.org/10.1002/ece3.953CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hollants J, Leroux O, Leliaert F, Decleyre H, De Clerck O, Willems A (2011) Who is in there? Exploration of endophytic bacteria with in the siphonous green seaweed Bryopsis (Bryopsidales, Chlorophyta). PLoS One 6:e26458.  https://doi.org/10.1371/journal.pone.0026458CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hong SH, Song YS, Seo DJ, Kim KY, Jung WJ (2017) Antifungal activity and expression patterns of extracellular chitinase and β-1, 3-glucanase in Wickerhamomyces anomalus EG2 treated with chitin and glucan. Microb Pathog 110:159–164PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hsieh FC, Lin TC, Meng M, Kao SS (2008) Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide iturin A. Curr Microbiol 56(1):1–5PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hu X, Roberts DP, Maul JE et al (2011) Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations. Can J Microbiol 57:539–546PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hubbard M, Germida JJ, Vujanovic V (2014) Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol 116:109–122PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hurek T, Handley LL, Reinhold-Hurek B et al (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant-Microbe Interact 15(3):233–242PubMedCrossRefPubMedCentralGoogle Scholar
  56. Jain P, Pundir RK (2017) Potential role of endophytes in sustainable agriculture-recent developments and future prospects. In: Maheshwari D (ed) Endophytes: biology and biotechnology. Sustainable development and biodiversity, vol 15. Springer, ChamGoogle Scholar
  57. Jalgaonwala RE, Mohite BV, Mahajan RT (2011) Natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res 1:21–32Google Scholar
  58. Jallow MFA, Dugassa-Gobena D, Vidal S (2004) Indirect interaction between an unspecialised endophytic fungus and a polyphagous moth. Basic Appl Ecol 5:183–191CrossRefGoogle Scholar
  59. Jasim B, Anisha C, Rohini S, Kurian JM, Jyothis M, Radhakrishnan EK (2014a) Phenazine carboxylic acid production and rhizome protective effect of endophytic Pseudomonas aeruginosa isolated from Zingiber officinale. World J Microbiol Biotechnol 30(5):1649–1654PubMedCrossRefPubMedCentralGoogle Scholar
  60. Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK (2014b) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4(2):197–204PubMedCrossRefPubMedCentralGoogle Scholar
  61. Jasim B, Anish MC, Shimil V, Jyothis M, Radhakrishnan EK (2015) Studies on plant growth promoting properties of fruit-associated bacteria from Elettaria cardamomum and molecular analysis of ACC deaminase gene. Appl Biochem Biotechnol 177(1):175–189.  https://doi.org/10.1007/s12010-015-1736-6CrossRefPubMedPubMedCentralGoogle Scholar
  62. Jasim B, Mathew J, Radhakrishnan EK (2016a) Identification of a novel endophytic Bacillus sp. from Capsicum annuum with highly efficient and broad spectrum plant probiotic effect. J Appl Microbiol 121(4):1079–1094.  https://doi.org/10.1111/jam.13214CrossRefPubMedPubMedCentralGoogle Scholar
  63. Jasim B, Sreelakshmi KS, Mathew J, Radhakrishnan EK (2016b) Surfactin, iturin, and fengycin biosynthesis by endophytic Bacillus sp. from Bacopa monnieri. Microb Ecol 72(1):106–119PubMedCrossRefPubMedCentralGoogle Scholar
  64. Jemil N, Manresa A, Rabanal F, Ayed HB, Hmidet N, Nasri M (2017) Structural characterization and identification of cyclic lipopeptides produced by Bacillus methylotrophicus DCS1 strain. J Chromatogr B 1060:374–386CrossRefGoogle Scholar
  65. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and a virulence gene products confers rice blast resistance. EMBO J 19(15):4004–4014PubMedPubMedCentralCrossRefGoogle Scholar
  66. Joseph B, Priya M (2011) Review on nutritional, medicinal and pharmacological properties of guava (Psidium guajava Linn.). Int J Pharm Biol Sci 2(1):53–69Google Scholar
  67. Kaga H, Mano H, Tanaka F, Watanabe A, Kaneko S, Morisaki H (2009) Rice seeds as sources of endophytic bacteria. Microbes Environ 24:154–162PubMedCrossRefPubMedCentralGoogle Scholar
  68. Khalaf EM, Raizada MN (2018) Bacterial seed endophytes of domesticated cucurbits antagonize fungal and oomycete pathogens including powdery mildew. Front Microbiol 9(FEB):1–18.  https://doi.org/10.3389/fmicb.2018.00042.CrossRefGoogle Scholar
  69. Khamchatra N, Dixon K, Chayamarit K, Apisitwanich S, Tantiwiwat S (2016) Using in situ seed baiting technique to isolate and identify endophytic and mycorrhizal fungi from seeds of a threatened epiphytic orchid, Dendrobium friedericksianum Rchb.f. (Orchidaceae). Agric Nat Resour 50:8–13.  https://doi.org/10.1016/j.anres.2016.01.002CrossRefGoogle Scholar
  70. Khan AR, Ullah I, Waqas M, Shahzad R, Hong SJ, Park GS, Jung BK, Lee IJ, Shin JH (2015) Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J Microbiol Biotechnol 31(9):1461–1466PubMedCrossRefPubMedCentralGoogle Scholar
  71. Khan Z, Rho H, Firrincieli A, Hung SH, Luna V, Masciarelli O, Kim SH, Doty SL (2016) Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Curr Plant Biol 6:38–47CrossRefGoogle Scholar
  72. Klaedtke S, Jacques M-A, Raggi L et al (2015) Terroir is a key driver of seed-associated microbial assemblages. Environ Microbiol 18(6):1792–1804PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kloepper JW, Ryu C-M (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 33–52CrossRefGoogle Scholar
  74. Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Böhm M, Friedrich F, Hurek T, Krause L, Linke B (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24(11):1CrossRefGoogle Scholar
  75. Krishnan P, Bhat R, Kush A, Ravikumar P (2012) Isolation and functional characterization of bacterial endophytes from Carica papaya fruits. J Appl Microbiol 113(2):308–317PubMedCrossRefPubMedCentralGoogle Scholar
  76. Krolicka M, Hinz SW, Koetsier MJ, Joosten R, Eggink G, van den Broek LA, Boeriu CG (2018) Chitinase Chi1 from Myceliophthora thermophila C1, a thermostable enzyme for chitin and chitosan depolymerization. J Agric Food Chem 66(7):1658–1669PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kwak JY, Song SY, Kim H, Jeong SG, Kang BK, Kim SK, Kwon CH, Lee DSY, Park SH, Kim JF (2012) Complete genome sequence of the endophytic bacterium Burkholderia sp. strain KJ006. J Bacteriol 194:4432–4433PubMedPubMedCentralCrossRefGoogle Scholar
  78. Larran S, Simon MR, Moreno MV, Siurana MPS, Perell A (2016) Endophytes from wheat as biocontrol agents against tan spot disease. Biol Control 92:17–23CrossRefGoogle Scholar
  79. Li JY, Strobel G, Harper J, Lobkovsky E, Clardy J (2000) Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Org Lett 2(6):767–770PubMedCrossRefPubMedCentralGoogle Scholar
  80. Li JY, Harper JK, Grant DM, Tombe BO, Bashyal B, Hess WM, Strobel GA (2001) Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry 56(5):463–468PubMedCrossRefPubMedCentralGoogle Scholar
  81. Liu Y, Zuo S, Zou Y, Wang J, Song W (2013) Investigation on diversity and population succession dynamics of endophytic bacteria from seeds of maize (Zea mays L., Nongda108) at different growth stages. Ann Microbiol 63:71–79.  https://doi.org/10.1007/s13213-012-0446-3CrossRefGoogle Scholar
  82. Liu J, Nagabhyru P, Schardl CL (2017) Epichloë festucae endophytic growth in florets, seeds, and seedlings of perennial ryegrass (Lolium perenne). Mycologia 109(5):691–700.  https://doi.org/10.1080/00275514.2017.1400305CrossRefPubMedPubMedCentralGoogle Scholar
  83. Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, Van Der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606CrossRefGoogle Scholar
  84. López-López A, Rogel MA, Ormeño-Orrillo E, Martínez-Romero J, Martínez-Romero E (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 33:322–327.  https://doi.org/10.1016/j.syapm.2010.07.005CrossRefPubMedPubMedCentralGoogle Scholar
  85. Maehara S, Agusta A, Kitamura C, Ohashi K, Shibuya H (2016) Composition of the endophytic filamentous fungi associated with Cinchona ledgeriana seeds and production of cinchona alkaloids. J Nat Med 70:271–275.  https://doi.org/10.1007/s11418-015-0954-0CrossRefPubMedPubMedCentralGoogle Scholar
  86. Makovitzki A, Avrahami D, Shai Y (2006) Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci 103(43):15997–16002PubMedCrossRefPubMedCentralGoogle Scholar
  87. Malfanova N, Lugtenberg BJJ, Berg G (2013) Bacterial endophytes: who and where, and what are they doing there. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley-Blackwell, Hoboken, NJ, pp 391–403CrossRefGoogle Scholar
  88. Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63(8):2853–2872PubMedCrossRefPubMedCentralGoogle Scholar
  89. Mano H, Tanaka F, Watanabe A, Kaga H, Okunishi S, Morisaki H (2006) Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ 21:86–100.  https://doi.org/10.1264/jsme2.21.86CrossRefGoogle Scholar
  90. Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C et al (2009) Endophytic bacteria from seeds of Nicotiana Tabacum can reduce cadmium phytotoxicity. Int J Phytoremed 11:251–267.  https://doi.org/10.1080/15226510802432678CrossRefGoogle Scholar
  91. Mattos KA, Pádua VLM, Romeiro A, Hallack LF, Neves BC, Ulisses TMU et al (2008) Endophytic colonization of rice (Oryza sativa L.) by the diazotrophic bacterium Burkholderia kururiensis and its ability to enhance plant growth. An Acad Bras Cienc 80:477–493.  https://doi.org/10.1590/S0001-37652008000300009CrossRefPubMedPubMedCentralGoogle Scholar
  92. Meena KR, Kanwar SS (2015) Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int 2015:1Google Scholar
  93. Miller JT, Dong F, Jackson SA, Song J, Jiang J (1998) Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics 150(4):1615–1623PubMedPubMedCentralGoogle Scholar
  94. Mnif I, Grau-Campistany A, Coronel-León J, Hammami I, Triki MA, Manresa A, Ghribi D (2016) Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ Sci Pollut Res 23(7):6690–6699CrossRefGoogle Scholar
  95. Moyne AL, Cleveland TE, Tuzun S (2004) Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett 234(1):43–49PubMedCrossRefPubMedCentralGoogle Scholar
  96. Mukhopadhyay K, Garrison NK, Hinton DM, Bacon CW, Khush GS, Peck HD, Datta N (1996) Identification and characterization of bacterial endophytes of rice. Mycopathologia 134(3):151–159PubMedCrossRefPubMedCentralGoogle Scholar
  97. Newcombe G, Shipunov A, Eigenbrode S, Raghavendra AK, Ding H, Anderson CL, Schwarzländer M (2009) Endophytes influence protection and growth of an invasive plant. Commun Integr Biol 2(1):29–31PubMedPubMedCentralCrossRefGoogle Scholar
  98. Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793PubMedCrossRefPubMedCentralGoogle Scholar
  99. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125.  https://doi.org/10.1016/j.tim.2007.12.009CrossRefPubMedPubMedCentralGoogle Scholar
  100. Onja Andriambeloson H (2016) Biological potentials of ginger associated Streptomyces compared with ginger essential oil. Am J Life Sci 4:152CrossRefGoogle Scholar
  101. Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745PubMedPubMedCentralCrossRefGoogle Scholar
  102. Pageni BB, Lupwayi NZ, Akter Z, Larney FJ, Kawchuk LM, Gan Y (2014) Plant growth-promoting and phytopathogen-antagonistic properties of bacterial endophytes from potato (Solanum tuberosum L.) cropping systems. Can J Plant Sci 94(5):835–844CrossRefGoogle Scholar
  103. Pandya M, Rajput M, Rajkumar S (2015) Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiata. Microbiology 84:80–89.  https://doi.org/10.1134/S0026261715010105CrossRefGoogle Scholar
  104. Parsa S, García-Lemos AM, Castillo K et al (2016) Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris. Fungal Biol 120:783–790.  https://doi.org/10.1016/j.funbio.2016.01.017CrossRefPubMedPubMedCentralGoogle Scholar
  105. Paungfoo-Lonhienne C, Rentsch D, Robatzek S, Webb RI, Sagulenko E, Näsholm T, Schmidt S, Lonhienne TGA (2010) Turning the table: plants consume microbes as a source of nutrients. PLoS One 5:e11915PubMedPubMedCentralCrossRefGoogle Scholar
  106. Paungfoo-Lonhienne C, Schmidt S, Webb RI (2013) Interactions, P.M. Rhizophagy—a new dimension of plant—microbe interactions. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 2. Wiley-Blackwell, Hoboken, NJ, pp 1201–1207Google Scholar
  107. Paungfoo-Lonhienne C, Lonhienne TGA, Yeoh YK, Webb RI, Lakshmanan P, Chan CX et al (2014) A new species of Burkholderia isolated from sugarcane roots promotes plant growth. Microb Biotechnol 7:142–154.  https://doi.org/10.1111/1751-7915.12105CrossRefPubMedPubMedCentralGoogle Scholar
  108. Pimentel MR, Molina G, Dionisio AP, Maróstica MR, Pastore GM (2011) Use of endophytes to obtain bioactive compounds and their application in biotransformation process. Bio Technol Res Int 576286:2011.  https://doi.org/10.4061/2011/576286CrossRefGoogle Scholar
  109. Pitzschke A (2018) Molecular dynamics in germinating, endophyte-colonized quinoa seeds. Plant Soil 422(1–2):135–154.  https://doi.org/10.1007/s11104-017-3184-2.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Prieto P, Schilirò E, Maldonado-González MM, Valderrama R, Barroso-Albarracín JB, Mercado-Blanco J (2011) Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb Ecol 62:435–445PubMedPubMedCentralCrossRefGoogle Scholar
  111. Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68(12):1717–1719PubMedCrossRefPubMedCentralGoogle Scholar
  112. Rajamanikyam M, Vadlapudi V, Amanchy R, Upadhyayula SM (2017) Endophytic fungi as novel resources of natural therapeutics. Braz Arch Biol Technol 60:e17160542CrossRefGoogle Scholar
  113. Rohini S, Aswani R, Kannan M et al (2018) Culturable endophytic bacteria of ginger rhizome and their remarkable multi-trait plant growth-promoting features. Curr Microbiol 75:505.  https://doi.org/10.1007/s00284-017-1410-zCrossRefPubMedPubMedCentralGoogle Scholar
  114. Romano A, Vitullo D, Di Pietro A, Lima G, Lanzotti V (2011) Antifungal lipopeptides from Bacillus amyloliquefaciens strain BO7. J Nat Prod 74(2):145–151PubMedCrossRefPubMedCentralGoogle Scholar
  115. Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact 20(4):430–440PubMedCrossRefPubMedCentralGoogle Scholar
  116. Roongsawang N, Washio K, Morikawa M (2010) Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int J Mol Sci 12(1):141–172PubMedPubMedCentralCrossRefGoogle Scholar
  117. Rozpadek P, Wezowicz K, Nosek M, Wazny R, Tokarz K, Lembicz M et al (2015) The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta 242:1025–1035.  https://doi.org/10.1007/s00425-015-2337-xCrossRefPubMedPubMedCentralGoogle Scholar
  118. Ruiz D, Agaras B, Werra P, Wall LG, Valverde C (2011) Characterization and screening of plant probiotic traits of bacteria isolated from rice seeds cultivated in Argentina. J Microbiol 49:902–912PubMedCrossRefPubMedCentralGoogle Scholar
  119. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  120. Rybakova D, Cernava T, Köberl M, Liebminger S, Etemadi M, Berg G (2016) Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant Soil 405:125–140.  https://doi.org/10.1007/s11104-015-2526-1CrossRefGoogle Scholar
  121. Sabu R, Aswani R, Jishma P, Jasim B, Mathew J, Radhakrishnan EK (2017a) Plant growth promoting endophytic Serratia sp. ZoB14 protecting ginger from fungal pathogens. Proc Natl Acad Sci India Sect B Biol Sci 7:1–8Google Scholar
  122. Sabu R, Soumya KR, Radhakrishnan EK (2017b) Endophytic Nocardiopsis sp. from Zingiber officinale with both antiphytopathogenic mechanisms and antibiofilm activity against clinical isolates. 3 Biotech 7(115):115.  https://doi.org/10.1007/s13205-017-0735-4CrossRefPubMedPubMedCentralGoogle Scholar
  123. Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte–plant symbioses. Trends Plant Sci 9:275–280.  https://doi.org/10.1016/j.tplants.2004.04.005CrossRefPubMedPubMedCentralGoogle Scholar
  124. Saini R, Dudeja SS, Giri R, Kumar V (2015) Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in northern India. J Basic Microbiol 55:74–81.  https://doi.org/10.1002/jobm.201300173CrossRefPubMedPubMedCentralGoogle Scholar
  125. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648CrossRefGoogle Scholar
  126. Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99PubMedCrossRefPubMedCentralGoogle Scholar
  127. Scott MMR, Samsatly J, Charron J-B, Jabaji S (2018) Endophytes of industrial hemp (Cannabis sativa L.) cultivars: identification of culturable bacteria and fungi in leaves, petioles, and seeds. Can J Microbiol 64:1–17.  https://doi.org/10.1139/cjm-2018-0108CrossRefGoogle Scholar
  128. Shade A, Jacques M-A, Barret M (2017) Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr Opin Microbiol 37:15–22.  https://doi.org/10.1016/j.mib.2017.03.010CrossRefPubMedPubMedCentralGoogle Scholar
  129. Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, Kang S-M, Yun B-W, Lee I-J (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243.  https://doi.org/10.1016/j.plaphy.2016.05.006CrossRefPubMedPubMedCentralGoogle Scholar
  130. Shahzad R, Khan AL, Bilal S, Asaf S, Lee I-J (2017) Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato. Peer J 5:e3107.  https://doi.org/10.7717/peerj.3107CrossRefPubMedPubMedCentralGoogle Scholar
  131. Shearin ZRC, Filipek M, Desai R, Bickford WA, Kowalski KP, Clay K (2017) Fungal endophytes from seeds of invasive, non-native Phragmites australis and their potential role in germination and seedling growth. Plant Soil 2017:1–12.  https://doi.org/10.1007/s11104-017-3241-xCrossRefGoogle Scholar
  132. Shen XY, Cheng YL, Cai CJ, Fan L, Gao J, Hou CL (2014) Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds. PLoS One 9(4):e95838PubMedPubMedCentralCrossRefGoogle Scholar
  133. Shi J, Liu A, Li X et al (2010) Identification of endophytic bacterial strain MGP1 selected from papaya and its biocontrol effects on pathogens infecting harvested papaya fruit. J Sci Food Agric 90:227–232PubMedCrossRefPubMedCentralGoogle Scholar
  134. Sicuia OA, Grosu I, Constantinescu F, Voaides C, Cornea CP (2015) Enzymatic and genetic variability in Bacillus spp. strains with plant beneficial qualities. AgroLife Sci J 4:124–131Google Scholar
  135. Singh R, Dubey AK (2015) Endophytic actinomycetes as emerging source for therapeutic compounds. Indo Global J Pharm Sci 5:106–116Google Scholar
  136. Smith SA, Tank DC, Boulanger L-A, Bascom-Slack CA, Eisenman K, Kingery D et al (2008) Bioactive endophytes warrant intensified exploration and conservation. PLoS One 3:e3052.  https://doi.org/10.1371/journal.pone.0003052CrossRefPubMedPubMedCentralGoogle Scholar
  137. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502PubMedPubMedCentralCrossRefGoogle Scholar
  138. Strobel GA, Miller RV, Martinez-Miller C, Condron MM, Teplow DB, Hess WM (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145(8):1919–1926PubMedCrossRefPubMedCentralGoogle Scholar
  139. Sun H, He Y, Xiao Q, Ye R, Tian Y (2013) Isolation, characterization, and antimicrobial activity of endophytic bacteria from Polygonum cuspidatum. Afr J Microbiol Res 7:1496–1504.  https://doi.org/10.5897/AJMR12.899CrossRefGoogle Scholar
  140. Sun B-T, Senyo Akutse K, Xia X-F et al (2018) Endophytic effects of Aspergillus oryzae on radish (Raphanus sativus) and its herbivore, Plutella xylostella. Planta 1(3):705.  https://doi.org/10.1007/s00425-018-2928-4CrossRefGoogle Scholar
  141. Sundaramoorthy S, Balabaska P (2013) Evaluation of combined efficacy of Pseudomonas fluorescens and Bacillus subtilis in managing tomato wilt caused by Fusarium oxysporum f. Sp. lycopersici (Fol). Plant Pathol J 12:154–161CrossRefGoogle Scholar
  142. Taechowisan T, Lu C, Shen Y, Lumyong S (2005) Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology 151(5):1691–1695PubMedCrossRefPubMedCentralGoogle Scholar
  143. Taechowisan T, Chanaphat S, Ruensamran W, Phutdhawong WS (2013) Antibacterial activity of Decursin from Streptomyces sp. GMT-8; an endophyte in Zingiber officinale Rosc. J Appl Pharm Sci 3:74–78.  https://doi.org/10.7324/JAPS.2013.31012CrossRefGoogle Scholar
  144. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75(3):748–757PubMedCrossRefPubMedCentralGoogle Scholar
  145. Tanaka K, Amaki Y, Ishihara A, Nakajima H (2015) Synergistic effects of [Ile7] surfactin homologues with bacillomycin D in suppression of gray mold disease by Bacillus amyloliquefaciens biocontrol strain SD-32. J Agric Food Chem 63:5344–5353.  https://doi.org/10.1021/acs.jafc.5b01198CrossRefPubMedPubMedCentralGoogle Scholar
  146. Tapi A, Chollet-Imbert M, Scherens B, Jacques P (2010) New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl Microbiol Biotechnol 85(5):1521–1531PubMedCrossRefPubMedCentralGoogle Scholar
  147. Tayung K, Sarkar M, Baruah P (2012) Endophytic fungi occurring in Ipomoea carnea tissues and their antimicrobial potentials. Braz Arch Biol Tech 55:653–660CrossRefGoogle Scholar
  148. Toral L, Rodríguez M, Béjar V, Sampedro I (2018) Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea. Front Microbiol 9:1315PubMedPubMedCentralCrossRefGoogle Scholar
  149. Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7:40–50.  https://doi.org/10.1111/1758-2229.12181CrossRefGoogle Scholar
  150. Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91(2):127–141PubMedCrossRefPubMedCentralGoogle Scholar
  151. Verma SK, Kingsley K, Bergen M et al (2018a) Bacterial endophytes from rice cut grass (Leersia oryzoides L.) increase growth, promote root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease. Plant Soil 422(1–2):223–238.  https://doi.org/10.1007/s11104-017-3339-1CrossRefGoogle Scholar
  152. Verma S, Kingsley K, Bergen M et al (2018b) Fungal disease prevention in seedlings of rice (Oryza sativa) and other grasses by growth-promoting seed-associated endophytic bacteria from invasive Phragmites australis. Microorganisms 6:21.  https://doi.org/10.3390/microorganisms6010021CrossRefPubMedCentralGoogle Scholar
  153. Vincent D, Bedon F (2013) Secretomics of plant-fungus associations: more secrets to unravel. J Plant Biochem Physiol 1(5):1000e117.  https://doi.org/10.4172/2329-9029.1000e117CrossRefGoogle Scholar
  154. Walitang DI, Kim K, Madhaiyan M et al (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC Microbiol 17(1):209.  https://doi.org/10.1186/s12866-017-1117-0CrossRefPubMedPubMedCentralGoogle Scholar
  155. Wang P, Guo Q, Ma Y, Li S, Lu X, Zhang X, Ma P (2015) DegQ regulates the production of fengycins and biofilm formation of the biocontrol agent Bacillus subtilis NCD-2. Microbiol Res 178:42–50PubMedCrossRefPubMedCentralGoogle Scholar
  156. Wearn JA, Sutton BC, Morley NJ, Gange AC (2012) Species and organ specificity of fungal endophytes in herbaceous grassland plants. J Ecol 100:1085–1092CrossRefGoogle Scholar
  157. White JF, Torres MS, Somu MP, Johnson H, Irizarry I, Chen Q, Zhang N, Walsh E, Tadych M, Bergen M (2014) Hydrogen peroxide staining to visualize intracellular bacterial infections of seedling root cells. Microsc Res Tech 77:566–573PubMedCrossRefPubMedCentralGoogle Scholar
  158. White JF, Kingsley KI, Kowalski KP, Irizarry I, Micci A, Soares MA et al (2017) Disease protection and allelopathic interactions of seed-transmitted endophytic Pseudomonads of invasive reed grass (Phragmites australis). Plant Soil 422(1–2):195–208.  https://doi.org/10.1007/s11104-016-3169-6CrossRefGoogle Scholar
  159. Wisniewski-Dyé K, Borziak G, Khalsa-Moyers G, Alexandre LO, Sukharnikov K, Wuichet GB, Hurst WH, McDonald JS, Robertson V, Barbe A, Calteau Z, Rouy S, Mangenot C, Prigent-Combaret P, Normand M, Boyer P, Siguier Y, Dessaux C, Elmerich G, Condemine G, Krishnen I, Kennedy AH, Paterson V, González P, Mavingui IB (2011) Zhulin Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7:e1002430PubMedPubMedCentralCrossRefGoogle Scholar
  160. Wu Z, Bañuelos GS, Lin ZQ, Liu Y, Yuan L, Yin X, Li M (2015) Biofortification and phytoremediation of selenium in China. Front Plant Sci 6:136PubMedPubMedCentralGoogle Scholar
  161. Xu M, Sheng J, Chen L, Men Y, Gan L, Guo S et al (2014) Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World J Microbiol Biotechnol 30:835–845.  https://doi.org/10.1007/s11274-013-1486-yCrossRefPubMedPubMedCentralGoogle Scholar
  162. Zarei M, Aminzadeh S, Zolgharnein H, Safahieh A, Daliri M, Noghabi KA, Ghoroghi A, Motallebi A (2011) Characterization of a chitinase with antifungal activity from a native Serratia marcescens B4A. Braz J Microbiol 42(3):1017–1029PubMedPubMedCentralCrossRefGoogle Scholar
  163. Zhao K, Penttinen P, Guan T, Xiao J, Chen Q, Xu J et al (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi Plateau China. Curr Microbiol 62(1):182–190PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of BiosciencesMahatma Gandhi UniversityKottayamIndia

Personalised recommendations