Rhizome Endophytes: Roles and Applications in Sustainable Agriculture

  • Akanksha Gupta
  • Hariom Verma
  • Prem Pratap Singh
  • Pardeep Singh
  • Monika Singh
  • Virendra Mishra
  • Ajay Kumar


A rhizome is a modified subterranean diageotropic stem developed from axillary buds that retain the ability to give rise to a new plant. The presence of rhizomes in soil favors the growth of various microbial communities in its rhizosphere; some of the microbes enter inside rhizomes and survive as endophytes. Currently endophytic microorganisms are gaining attention by researchers due to their capability to synthesizing novel bioactive compounds that are useful in disease management of phytopathogens, and some of these compounds are important in novel drug discovery. In the sustainable agriculture, many of the bacterial and fungal endophytes are used as plant and soil inoculants to enhance yield and productivity of crops. The use of endophytes as biofertilizers is eco-friendly and has no adverse effects on the climate, or texture and productivity of soils, unlike chemical fertilizers. Microbes are relatively unexplored from rhizomes of various plants including medicinally important plants. These endophytes may be important biofertilizers, biocontrol agents, and agents for biotic or abiotic stress management.


Endophyte Rhizome Plant growth promotion Biocontrol Biofertilizer 



Authors thank the University Grants Commission and CSIR, New Delhi, for fellowship in the form of JRF and SRF.


  1. Aggarwal BB, Shishodia S (2004) Suppression of the nuclear factor-kappa B activation pathway by spice-derived phytochemicals: reasoning for seasoning. Ann N Y Acad Sci 1030:434–441PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alibrandi P, Cardinale M, Rahman MM, Strati F, Ciná P, de Viana ML, Giamminola EM, Gallo G, Schnell S, De Filippo C (2018) The seed endosphere of Anadenanthera colubrina is inhabited by a complex microbiota, including Methylobacterium spp. and Staphylococcus spp. with potential plant-growth promoting activities. Plant Soil 422(1–2):81–99Google Scholar
  3. Alkotaini B, Anuar N, Kadhum AAH, Sani AAA (2013) Detection of secreted antimicrobial peptides isolated from cell-free culture supernatant of Paenibacillus alvei AN5. J Ind Microbiol Biotechnol 40(6):571–579PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alström S (2001) Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae. J Phytopathol 149(2):57–64CrossRefGoogle Scholar
  5. Amalraj A, Pius A, Gopi S, Gopi S (2017) Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – a review. J Tradit Complement Med 7(2):205–233PubMedCrossRefPubMedCentralGoogle Scholar
  6. Anandaraj B, Vellaichamy A, Kachman M, Selvamanikandan A, Pegu S, Murugan V (2009) Co-production of two new peptide antibiotics by a bacterial isolate Paenibacillus alvei NP75. Biochem Biophys Res Commun 379(2):179–185PubMedCrossRefPubMedCentralGoogle Scholar
  7. Anisha C, Mathew J, Radhakrishnan E (2013) Plant growth promoting properties of endophytic Klebsiella sp. isolated from Curcuma longa. IJBPAS 2(3):593–601Google Scholar
  8. Anisha C, Jishma P, Bilzamol VS, Radhakrishnan EK (2018) Effect of ginger endophyte Rhizopycnis vagum on rhizome bud formation and protection from phytopathogens. Biocat Agric Biotechnol 14:116–119CrossRefGoogle Scholar
  9. Antoun H (2012) Beneficial microorganisms for the sustainable use of phosphates in agriculture. Procedia Eng 46:62–67CrossRefGoogle Scholar
  10. Arora D, Kumar S, Singh D, Jindal N, Mahajan NK (2013) Isolation, characterization and antibiogram pattern of Salmonella from poultry in parts of Haryana. India Adv Anim Vet Sci 1(5):161–163Google Scholar
  11. Aswathy AJ, Jasim B, Jyothis M, Radhakrishnan E (2013) Identification of two strains of Paenibacillus sp. as indole 3 acetic acid-producing rhizome-associated endophytic bacteria from Curcuma longa. 3 Biotech 3(3):219–224PubMedCrossRefPubMedCentralGoogle Scholar
  12. Balogh B, Jones J, Iriarte F, Momol M (2010) Phage therapy for plant disease control. Curr Pharm Biotechnol 11(1):48–57PubMedCrossRefPubMedCentralGoogle Scholar
  13. Barik BP, Tayung K, Jagadev PN, Dutta SK (2010) Phylogenetic placement of an endophytic fungus Fusarium oxysporum isolated from Acorus calamus rhizomes with antimicrobial activity. EJBS 2(1):8–16Google Scholar
  14. Benhamou N, Chet I (1996) Parasitism of sclerotia of Sclerotium rolfsii by Trichoderma harzianum: ultrastructural and cytochemical aspects of the interaction. Phytopathology 86(4):405CrossRefGoogle Scholar
  15. Benhamou N, Kloepper JW, Quadt-Hallman A, Tuzun S (1996) Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol 112(3):919–929PubMedPubMedCentralCrossRefGoogle Scholar
  16. Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74(4):874–880PubMedCrossRefPubMedCentralGoogle Scholar
  17. Boominathan U, Sivakumaar P (2012) A liquid chromatography method for the determination of curcumin in PGPR inoculated Curcuma longa. L. plant. Int J Pharm Sci Res 3(11):4438Google Scholar
  18. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64(1):807–838CrossRefGoogle Scholar
  19. Bustanussalam B, Rachman F, Septiana E, Lekatompessy SJR, Widowati T, Sukiman HI, Simanjuntak P (2015) Screening for endophytic fungi from turmeric plant (Curcuma longa L.) of Sukabumi and Cibinong with potency as antioxidant compounds producer. Pak J Biol Sci 18(1):42–45PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chanway CP (1996) Endophytes: they’re not just fungi! Can J Bot 74(3):321–322CrossRefGoogle Scholar
  21. Chen T, Chen Z, Ma GH, Du BH, Shen B, Ding YQ, Xu K (2014) Diversity and potential application of endophytic bacteria in ginger. Genet Mol Res 13(3):4918–4931PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chevrot R, Didelot S, van den Bossche L, Tambadou F, Caradec T, Marchand P, Izquierdo E, Sopéna V, Caillon J, Barthélémy C, van Schepdael A, Hoogmartens J, Rosenfeld E (2013) A novel depsipeptide produced by Paenibacillus alvei 32 isolated from a cystic fibrosis patient. Probiotics Antimicrob Proteins 5(1):18–25PubMedCrossRefPubMedCentralGoogle Scholar
  23. Choudhary DK, Sharma KP, Gaur RK (2011) Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol Lett 33(10):1905–1910PubMedCrossRefPubMedCentralGoogle Scholar
  24. Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62(1):188–197PubMedCrossRefPubMedCentralGoogle Scholar
  25. de Almeida Lopes KB, Carpentieri-Pipolo V, Oro TH, Stefani Pagliosa E, Degrassi G (2016) Culturable endophytic bacterial communities associated with field-grown soybean. J Appl Microbiol 120(3):740–755PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dias ACF, Costa FEC, Andreote FD, Lacava PT, Teixeira MA, Assumpção LC, Araújo WL, Azevedo JL, Melo IS (2009) Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J Microbiol Biotechnol 25(2):189–195CrossRefGoogle Scholar
  27. Dong Z, Canny MJ, McCully ME, Roboredo MR, Cabadilla CF, Ortega E, Rodes R (1994) A nitrogen-fixing endophyte of sugarcane stems (a new role for the apoplast). Plant Physiol 105(4):1139–1147PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dutta SC, Neog B (2016) Accumulation of secondary metabolites in response to antioxidant activity of turmeric rhizomes co-inoculated with native arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Sci Hortic 204:179–184CrossRefGoogle Scholar
  29. Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage-mediated control of plant pathogens. Int J Microbiol 2012(6079):1–11CrossRefGoogle Scholar
  30. Frommel MI, Nowak J, Lazarovits G (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 96(3):928–936PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100(9):1738–1750PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gantar M, Kerby NW, Rowell P (1991) Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: II. An ultrastructural study. New Phytol 118(3):485–492CrossRefGoogle Scholar
  33. García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2(3):183–205CrossRefGoogle Scholar
  34. Gizmawy I, Kigel J, Koller D, Ofir M (1985) Initiation, orientation and early development of primary rhizomes in Sorghum halepense (L.) Pers. Ann Bot 55(3):343–350CrossRefGoogle Scholar
  35. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39CrossRefGoogle Scholar
  36. Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, LondonCrossRefGoogle Scholar
  37. Goswami D, Vaghela H, Parmar S, Dhandhukia P, Thakker JN (2013) Plant growth promoting potentials of Pseudomonas spp. strain OG isolated from marine water. J Plant Interact 8(4):281–290CrossRefGoogle Scholar
  38. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105(12):1422–1432CrossRefGoogle Scholar
  39. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hinton DM, Bacon CW (1995) Enterobacter cloacae is an endophytic symbiont of corn. Mycopathologia 129(2):117–125PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hu F, Wang D, Zhao X, Zhang T, Sun H, Zhu L, Zhang F, Li L, Li Q, Tao D, Fu B, Li Z (2011) Identification of rhizome-specific genes by genome-wide differential expression analysis in Oryza longistaminata. BMC Plant Biol 11:18PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hurek T, Reinhold-Hurek B, van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176(7):1913–1923PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jalgaonwala RE, Mahajan RT (2014) Production of anticancer enzyme asparaginase from endophytic Eurotium sp. isolated from rhizomes of Curcuma longa. Eur J Exp Biol 4(3):36–43Google Scholar
  44. James EK, Reis VM, Olivares FL, Baldani JI, Döbereiner J (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45(6):757–766CrossRefGoogle Scholar
  45. Jang CS, Kamps TL, Skinner DN, Schulze SR, Vencill WK, Paterson AH (2006) Functional classification, genomic organization, putatively cis-acting regulatory elements, and relationship to quantitative trait loci, of sorghum genes with rhizome-enriched expression. Plant Physiol 142(3):1148–1159PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jasim B, Jimtha CJ, Jyothis M, Radhakrishnan EK (2013) Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regul 71(1):1–11CrossRefGoogle Scholar
  47. Jasim B, Anisha C, Rohini S, Kurian JM, Jyothis M, Radhakrishnan EK (2014a) Phenazine carboxylic acid production and rhizome protective effect of endophytic Pseudomonas aeruginosa isolated from Zingiber officinale. World J Microbiol Biotechnol 30(5):1649–1654PubMedCrossRefPubMedCentralGoogle Scholar
  48. Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK (2014b) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4(2):197–204PubMedCrossRefPubMedCentralGoogle Scholar
  49. Kauppinen M, Saikkonen K, Helander M, Pirttilä AM, Wäli PR (2016) Epichloë grass endophytes in sustainable agriculture. Nat Plants 2:15224PubMedCrossRefPubMedCentralGoogle Scholar
  50. Khammas KM, Kaiser P (1991) Characterization of a pectinolytic activity in Azospirillum irakense. Plant Soil 137(1):75–79CrossRefGoogle Scholar
  51. Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol 38(12):1219–1232CrossRefGoogle Scholar
  52. Knolhoff AM, Zheng J, McFarland MA, Luo Y, Callahan JH, Brown EW, Croley TR (2015) Identification and structural characterization of naturally-occurring broad-spectrum cyclic antibiotics isolated from Paenibacillus. J Am Soc Mass Spectrom 26(10):1768–1779PubMedCrossRefPubMedCentralGoogle Scholar
  53. Koo HJ, McDowell ET, Ma X, Greer KA, Kapteyn J, Xie Z, Descour A, Kim H, Yu Y, Kudrna D, Wing RA, Soderlund CA, Gang DR (2013) Ginger and turmeric expressed sequence tags identify signature genes for rhizome identity and development and the biosynthesis of curcuminoids, gingerols and terpenoids. BMC Plant Biol 13(1):27PubMedPubMedCentralCrossRefGoogle Scholar
  54. Krishnapura PR, Belur PD, Subramanya S (2016) A critical review on properties and applications of microbial l-asparaginases. Crit Rev Microbiol 42(5):720–737PubMedPubMedCentralGoogle Scholar
  55. Kumar A, Singh R, Giri DD, Singh PK, Pandey KD (2014) Effect of Azotobacter chroococcum CL13 inoculation on growth and curcumin content of turmeric (Curcuma longa L.). Int J Curr Microbiol App Sci 3(9):275–283Google Scholar
  56. Kumar V, Kumar A, Pandey KD, Roy BK (2015a) Isolation and characterization of bacterial endophytes from the roots of Cassia tora L. Ann Microbiol 65:1391–1139CrossRefGoogle Scholar
  57. Kumar A, Vandana S, Yadav A, Giri DD, Singh PK, Pandey KD (2015b) Rhizosphere and their role in plant–microbe interaction. In: Chaudhary KK, Dhar DW (eds) Microbes in soil and their agricultural prospects. Nova Science, New York, pp 83–97Google Scholar
  58. Kumar A, Vandana SR, Singh M, Pandey KD (2015c) Plant growth promoting rhizobacteria (PGPR): a promising approach for disease management. In: Singh JS, Singh DP (eds) Microbes and environmental management. Studium Press, New Delhi, pp 195–209Google Scholar
  59. Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD (2016a) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 6(1):60PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kumar A, Singh V, Singh M, Singh PP, Singh SK, Singh PK, Pandey KD (2016b) Isolation of plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L. Biocatal Agric Biotechnol 8:1–7CrossRefGoogle Scholar
  61. Kumar A, Verma H, Singh VK, Singh PP, Singh SK, Ansari WA, Yadav A, Singh PK, Pandey KD (2017) Role of Pseudomonas sp. in sustainable agriculture and disease management. In: Meena V, Mishra P, Bisht J, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 195–215CrossRefGoogle Scholar
  62. Kumar A, Singh VK, Tripathi V, Singh PP, Singh AK (2018) Plant growth-promoting rhizobacteria (PGPR): perspective in agriculture under biotic and abiotic stress. In: Crop improvement through microbial biotechnology, pp 333–342. Scholar
  63. Lahlali R, Hijri M (2010) Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. FEMS Microbiol Lett 311(2):152–159PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lee C, Kim S, Li W, Bang S, Lee H, Lee H-J, Noh E-Y, Park J-E, Bang WY, Shim SH (2017) Bioactive secondary metabolites produced by an endophytic fungus Gaeumannomyces sp. JS0464 from a maritime halophyte Phragmites communis. J Antibiot 70(6):737–742PubMedCrossRefPubMedCentralGoogle Scholar
  65. Levanony H, Bashan Y, Romano B, Klein E (1989) Ultrastructural localization and identification of Azospirillum brasilense Cd on and within wheat root by immuno-gold labeling. Plant Soil 117(2):207–218CrossRefGoogle Scholar
  66. Ling L, Lei L, Feng L, He N, Ding L (2014) Isolation and identification of endophytic bacterium TG116 from Typhonium giganteum and its antimicrobial characteristics. J Northwest Univ Nat Sci 5:019Google Scholar
  67. Liu Y-G, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8(3):457–463PubMedCrossRefPubMedCentralGoogle Scholar
  68. Liu K-W, Li Z-L, Pu S-B, Xu D-R, Zhou H-H, Shen W-B (2014) Chemical constituents of the rhizome of Typhonium giganteum. Chem Nat Compd 29:168Google Scholar
  69. Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21(6):583–606CrossRefGoogle Scholar
  70. Mahaffee W, Kloepper J (1997) Bacterial communities of the rhizosphere and endorhiza associated with field-grown cucumber plants inoculated with a plant growth-promoting rhizobacterium or its genetically modified derivative. Can J Microbiol 43(4):344–353PubMedCrossRefPubMedCentralGoogle Scholar
  71. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Gateway computing environments workshop (GCE) IEEE, pp 1–8Google Scholar
  72. Mukerjee A, Vishwanatha JK (2009) Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res 29(10):3867–3875PubMedPubMedCentralGoogle Scholar
  73. Niemhom N, Chutrakul C, Suriyachadkun C, Thawai C (2016) Asanoa endophytica sp. nov., an endophytic actinomycete isolated from the rhizome of Boesenbergia rotunda. Int J Syst Evol Microbiol 66(3):1377–1382PubMedCrossRefPubMedCentralGoogle Scholar
  74. Nongalleima K, Dey A, Deb L, Singh C, Thongam B, Devi HS, Devi SI (2013) Endophytic fungus isolated from Zingiber zerumbet (L.) Sm. inhibits free radicals and cyclooxygenase activity. Int J PharmTech Res 5(2):301–307Google Scholar
  75. Ohshiro M, Kuroyanagi M, Ueno A (1990) Structures of sesquiterpenes from Curcuma longa. Phytochemistry 29(7):2201–2205CrossRefGoogle Scholar
  76. Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:111CrossRefGoogle Scholar
  77. Panahi Y, Saadat A, Beiraghdar F, Hosseini Nouzari SM, Jalalian HR, Sahebkar A (2014) Antioxidant effects of bioavailability-enhanced curcuminoids in patients with solid tumors: a randomized double-blind placebo-controlled trial. J Funct Foods 6:615–622CrossRefGoogle Scholar
  78. Patriquin DG, Döbereiner J (1978) Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can J Microbiol 24(6):734–742PubMedCrossRefPubMedCentralGoogle Scholar
  79. Patriquin DG, Döbereiner J, Jain DK (1983) Sites and processes of association between diazotrophs and grasses. Can J Microbiol 29(8):900–915CrossRefGoogle Scholar
  80. Quadt-Hallmann A, Kloepper J (1996) Immunological detection and localization of the cotton endophyte Enterobacter asburiae JM22 in different plant species. Can J Microbiol 42(11):1144–1154CrossRefGoogle Scholar
  81. Quadt-Hallmann A, Kloepper JW, Benhamou N (1997) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43(6):577–582CrossRefGoogle Scholar
  82. Rao CV, Rivenson A, Simi B, Reddy BS (1995) Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 55(2):259–266PubMedPubMedCentralGoogle Scholar
  83. Reinhold-Hurek B, Hurek T (1998) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17(1):29–54CrossRefGoogle Scholar
  84. Rohini S, Aswani R, Kannan M, Sylas VP, Radhakrishnan EK (2018) Culturable endophytic bacteria of ginger rhizome and their remarkable multi-trait plant growth-promoting features. Curr Microbiol 75(4):505–511PubMedCrossRefPubMedCentralGoogle Scholar
  85. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19(8):827–837PubMedCrossRefPubMedCentralGoogle Scholar
  86. Rout ME, Chrzanowski TH, Westlie TK, DeLuca TH, Callaway RM, Holben WE (2013) Bacterial endophytes enhance competition by invasive plants. Am J Bot 100(9):1726–1737PubMedCrossRefPubMedCentralGoogle Scholar
  87. Ruppel S, Hecht-Buchholz C, Remus R, Ortmann U, Schmelzer R (1992) Settlement of the diazotrophic, phytoeffective bacterial strain Pantoea agglomerans on and within winter wheat: an investigation using ELISA and transmission electron microscopy. Plant Soil 145(2):261–273CrossRefGoogle Scholar
  88. Sabu R, Aswani R, Prabhakaran P, Krishnakumar B, Radhakrishnan EK (2018) Differential modulation of endophytic microbiome of ginger in the presence of beneficial organisms, pathogens and both as identified by DGGE analysis. Curr Microbiol 26(3):555Google Scholar
  89. Saini R, Dudeja SS, Giri R, Kumar V (2015) Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. J Basic Microbiol 55(1):74–81PubMedCrossRefPubMedCentralGoogle Scholar
  90. Sauvêtre A, Schröder P (2015) Uptake of carbamazepine by rhizomes and endophytic bacteria of Phragmites australis. Front Plant Sci 6(148):232Google Scholar
  91. Seo WT, Lim WJ, Kim EJ, Yun HD, Lee YH, Cho KM (2010) Endophytic bacterial diversity in the young radish and their antimicrobial activity against pathogens. J Korean Soc Appl Biol Chem 53(4):493–503CrossRefGoogle Scholar
  92. Shishido M, Massicotte HB, Chanway CP (1996) Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann Bot 77(5):433–442CrossRefGoogle Scholar
  93. Shubin L, Juan H, RenChao Z, ShiRu X, YuanXiao J (2014) Fungal endophytes of Alpinia officinarum rhizomes: insights on diversity and variation across growth years, growth sites, and the inner active chemical concentration. PLoS One 9(12):e115289PubMedPubMedCentralCrossRefGoogle Scholar
  94. Singh D, Rathod V, Ninganagouda S, Herimath J, Kulkarni P (2013) Biosynthesis of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and its antibacterial activity against pathogenic gram negative bacteria. J Pharm Res 7(5):448–453Google Scholar
  95. Singh M, Kumar A, Singh R, Pandey KD (2017a) Endophytic bacteria: a new source of bioactive compounds. 3 Biotech 7:315PubMedPubMedCentralCrossRefGoogle Scholar
  96. Singh VK, Singh AK, Kumar A (2017b) Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech 7(4):255PubMedPubMedCentralCrossRefGoogle Scholar
  97. Singh R, Pandey DK, Kumar A, Singh M (2017c) PGPR isolates from the rhizosphere of vegetable crop Momordica charantia: characterization and application as biofertilizer. Int J Curr Microbiol App Sci 6(3):1789–1802CrossRefGoogle Scholar
  98. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):a001438–a001438PubMedPubMedCentralCrossRefGoogle Scholar
  99. Srimal R (1997) Turmeric: a brief review of medicinal properties. Fitoterapia 68:483–493Google Scholar
  100. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25(1):13–19CrossRefGoogle Scholar
  102. Sturz AV, Christie BR, Matheson BG, Arsenault WJ, Buchanan NA (1999) Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathol 48(3):360–369CrossRefGoogle Scholar
  103. Sulistiyani TR, Lisdiyanti P (2016) Diversity of endophytic bacteria associated with (Curcuma heyneana) and their potency for nitrogen fixation. Widyariset 2(2):106CrossRefGoogle Scholar
  104. Sulistiyani S, Ardyati T, Winarsih S (2016) Antimicrobial and antioxidant activity of endophyte bacteria associated with Curcuma longa rhizome. J Exp Life Sci 6(1):45–51CrossRefGoogle Scholar
  105. Suryadevara N, Ponmurugan P (2012) Response of turmeric to plant growth promoting rhizobacteria (PGPR) inoculation under different levels of nitrogen. Int J Biol Technol 3(1):39–44Google Scholar
  106. Theantana T, Hyde KD, Lumyong S (2009) Asparaginase production by endophytic fungi from Thai medicinal plants: cytoxicity properties. Int J Integr Biol 7:1–8Google Scholar
  107. Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability – a review. Molecules 21(5):573PubMedCentralCrossRefGoogle Scholar
  108. Vinayarani G, Prakash HS (2018) Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani. World J Microbiol Biotechnol 34(3):49PubMedCrossRefPubMedCentralGoogle Scholar
  109. Vu T, Sikora R, Hauschild R (2006) Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 8(6):847–852CrossRefGoogle Scholar
  110. Wang H, Jiang X, Mu H, Liang X, Guan H (2007) Structure and protective effect of exopolysaccharide from P. agglomerans strain KFS-9 against UV radiation. Microbiol Res 162(2):124–129PubMedCrossRefPubMedCentralGoogle Scholar
  111. Wiehe W, Hecht-Buchholz C, Hoflich G (1994) Electron microscopic investigations on root colonization of Lupinus albus and Pisum sativum with two association plant growth promoting rhizobacteria, Pseudomonas fluorescens and Rhizobium leguminosarum bv. trifolii. Symbiosis (Philadelphia, PA) (USA)Google Scholar
  112. Xu L, Zhou L, Zhao J, Li J, Li X, Wang J (2008) Fungal endophytes from Dioscorea zingiberensis rhizomes and their antibacterial activity. Lett Appl Microbiol 46(1):68–72PubMedCrossRefPubMedCentralGoogle Scholar
  113. Zandi P, Basu SK (2016) Role of plant growth-promoting rhizobacteria (PGPR) as biofertilizers in stabilizing agricultural ecosystems. In: Nandwani D (ed) Organic farming for sustainable agriculture. Springer, pp 71–87Google Scholar
  114. Zhang Y, Kang X, Liu H, Liu Y, Li Y, Yu X, Zhao K, Gu Y, Xu K, Chen C, Chen Q (2018) Endophytes isolated from ginger rhizome exhibit growth promoting potential for Zea mays. Arch Agron Soil Sci 64(9):1302–1314CrossRefGoogle Scholar
  115. Zhao L, Deng Z, Yang W, Cao Y, Wang E, Wei G (2010) Diverse rhizobia associated with Sophora alopecuroides grown in different regions of Loess Plateau in China. Syst Appl Microbiol 33(8):468–477PubMedCrossRefPubMedCentralGoogle Scholar
  116. Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68(5):2198–2208PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Akanksha Gupta
    • 1
  • Hariom Verma
    • 1
  • Prem Pratap Singh
    • 1
  • Pardeep Singh
    • 2
  • Monika Singh
    • 1
  • Virendra Mishra
    • 3
  • Ajay Kumar
    • 1
  1. 1.Center of Advanced Study in BotanyInstitute of Science, Banaras Hindu UniversityVaranasiIndia
  2. 2.Department of Environmental SciencePGDAV College, University of DelhiNew DelhiIndia
  3. 3.Institute of Environment and Sustainable DevelopmentBanaras Hindu UniversityVaranasiIndia

Personalised recommendations