Agricultural Applications of Endophytic Microflora

  • John Reshma
  • Chandran Vinaya
  • Mathew LinuEmail author


Plants are colonized by various microbial communities which make substantial contribution in improving plant health and productivity. Endophytes are microbial populations that reside in host plants and play vital roles in plant growth and development and are considered as valuable tools in agriculture for improving crop performance. Endophytes promote plant growth through enhancing nitrogen fixation, phytohormone production, and phosphate solubilization and conferring tolerance to abiotic and biotic stresses. Endophytic microbial populations synthesize a vast variety of novel secondary metabolites including compounds with antifungal, antibacterial, and insecticidal properties. Biological control of plant pathogens and insect pests of cultivated crops gained attention as a method of decreasing the use of chemical pesticides in agriculture. The review describes various classes of secondary metabolites synthesized by endophytic microorganism with activity against insect pest and plant pathogens. Additionally, more plant species are to be explored for endophytic diversity and metabolites produced by them. This may lead to new developments in designing bio-based commercial products effective against crop and human pathogens.


Endophytes Plant growth promotion Insecticide Antibiosis Biological control 


Conflict of Interest

The authors declare no conflict of interest.


  1. Abreu-Tarazi MF, Navarrete AA, Andreote FD et al (2010) Endophytic bacteria in long-term in vitro cultivated axenic pineapple microplants revealed by PCR-DGGE. World J Microbiol Biotechnol 26:555–560CrossRefGoogle Scholar
  2. Ahemad M (2015) Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3Biotech 5(2):111–121Google Scholar
  3. Akutse K, Maniania N, Fiaboe K et al (2013) Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecol 6:293–301CrossRefGoogle Scholar
  4. Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol 113:1139–1114PubMedCrossRefPubMedCentralGoogle Scholar
  5. Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845PubMedCrossRefPubMedCentralGoogle Scholar
  6. Araújo WL, Lacava PT, Andreote FD et al (2008) Interaction between endophytes and plant host: biotechnological aspects. In: Barka EA, Clement C (eds) Plant-microbe interactions. Research Signpost, Kerala, India, pp 95–115Google Scholar
  7. Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66CrossRefGoogle Scholar
  8. Arnold A (2008) Hidden within our botanical richness, a treasure trove of fungal endophytes, vol 32. Plant Press, pp 13–15Google Scholar
  9. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549PubMedCrossRefPubMedCentralGoogle Scholar
  10. Azevedo JL, Maccheron W, Pereira JO et al (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol North Am.
  11. Bacon CW, Hill NS (1996) Symptomless grass endophytes: products of coevolutionary symbioses and their role in the ecological adaptations of grasses. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. American Phytopathological Society Press, St. Paul, MN, pp 155–178Google Scholar
  12. Bacon CW, White JF (2000) Microbial Endophytes. Marcel Dekker, New York, p 487Google Scholar
  13. Bacon CW, Glenn AE, Yates IE (2008) Fusarium verticillioides: managing the endophytic association with maize for reduced fumonisins accumulation. Toxin Rev 27:411–446CrossRefGoogle Scholar
  14. Bakker PAHM, Weisbeek PJ, Schipper’s B (1988) Siderophore production by plant growth promoting Pseudomonas spp. J Plant Nutr 11:925–933CrossRefGoogle Scholar
  15. Baltruschat H, Fodor J, Harrach BD et al (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510PubMedCrossRefPubMedCentralGoogle Scholar
  16. Barea JM, Pozo MJ, Azcon R et al (2005) Microbial cooperation in the rhizosphere. J Exp Bot 56:17611778CrossRefGoogle Scholar
  17. Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of in occulated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252CrossRefGoogle Scholar
  18. Barrow JR, Lucero ME, Vera I R et al (2008) Do symbiotic microbes have a role in plant evolution, performance and response to stress? Commun Integr Biol 1:6973CrossRefGoogle Scholar
  19. Bills GF, Polishook JD (1991) Microfungi from Carpinus caroliniana. Can J Bot 69:1477–1482CrossRefGoogle Scholar
  20. Blankenship JD, Spiering MJ, Wilkinson HH et al (2001) Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry 58:395–401PubMedCrossRefPubMedCentralGoogle Scholar
  21. Boberg JB, Ihrmark K, Lindahl BD (2011) Decomposing capacity of fungi commonly detected in Pinus sylvestris needle litter. Fungal Ecol 4:110–114CrossRefGoogle Scholar
  22. Boddey RM, De Oliveira OC, Urquiaga S et al (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209CrossRefGoogle Scholar
  23. Brader G, Compant S, Mitter B et al (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bulgarelli D, Schlaeppi K, Spaepen S et al (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838CrossRefGoogle Scholar
  25. Calhoun LA, Findlay JA, Miller JD et al (1992) Metabolites toxic to spruce bud worm from balsam fir needle endophytes. Mycol Res 96:281–286CrossRefGoogle Scholar
  26. Canny M, Huang C (1993) What is in the intercellular spaces of roots? Evidence from the cryo-analytical-scanning electron microscope. Physiol Plant 87:561–568CrossRefGoogle Scholar
  27. Canny M, McCully M (1988) The xylem sap of maize roots: its collection, composition and formation. Funct Plant Biol 15:557–566CrossRefGoogle Scholar
  28. Card S, Johnson L, Teasdale S et al (2016) Deciphering microbial behaviour the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92.
  29. Carter CJ, Cannon M, Smith KE (1976) Inhibition of protein synthesis in reticulocyte lysates by trichodermin. Biochem J 154:171–178PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chang WY, Lantz VA, Hennigar CR et al (2012) Benefit-cost analysis of spruce budworm (Choristoneura fumiferana Clem.) control: incorporating market and non-market values. J Environ Manag 93:104–112CrossRefGoogle Scholar
  31. Chen L, Chen J, Zheng X et al (2007) Identification and antifungal activity of the metabolite of endophytic fungi isolated from Llex cornuta. Chin J Pestic Sci 9:143–150Google Scholar
  32. Cherry A, Lomer CJ, Djegui D et al (1999) Pathogen incidence and their potential as microbial control agents in IPM of maize stem borers in West Africa. Biocontrol 44:301–327CrossRefGoogle Scholar
  33. Christina A, Christapher V, Bhore SJ (2013) Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacogn Rev 7:11–16PubMedPubMedCentralCrossRefGoogle Scholar
  34. Compant S, Duffy B, Nowak J et al (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959PubMedPubMedCentralCrossRefGoogle Scholar
  35. Coombs JT, Franco CMM (2003) Isolation and identification of Actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608PubMedPubMedCentralCrossRefGoogle Scholar
  36. Coombs JT, Michelsen PP, Franco CMM (2003) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29:359–366CrossRefGoogle Scholar
  37. Crowley DE, Kraemer SM (2007) Function of siderophores in the plant rhizosphere. In: Pinton R et al (eds) The rhizosphere, biochemistry and organic substances at the soil-plant interface. CRC Press, Boca Raton, pp 73–109Google Scholar
  38. Daisy BH, Strobel GA, Castillo U et al (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741PubMedCrossRefPubMedCentralGoogle Scholar
  39. Daniels C, Michan C, Ramos JL (2009) New molecular tools for enhancing methane production, explaining thermodynamically limited lifestyles and other important biotechnological issues. Microb Biotechnol 2:533–536PubMedPubMedCentralCrossRefGoogle Scholar
  40. Demain AL (2000) Microbial natural products: a past with a future. In: Chrystal EJT, Wrigley SK, Thomas R, Nicholson N, Hayes MA (eds) Biodiversity: new leads for pharmaceutical and agrochemical industries. The Royal Society of Chemistry, Cambridge, pp 3–16Google Scholar
  41. Du HJ, Zhang YQ, Liu HY et al (2013) Allonocardiopsis opalescens gen. nov., sp. nov., a new member of the suborder Streptosporangineae, from the surface-sterilized fruit of a medicinal plant. Int J Syst Evol Microbiol 63:900–904PubMedCrossRefPubMedCentralGoogle Scholar
  42. Estrada AER, Jonkers W et al (2012) Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a pathogen, and their shared plant host. Fungal Genet Biol 49:578–587CrossRefGoogle Scholar
  43. Findlay JA, Buthelezi S, Li G et al (1997) Insect toxins from an endophytic fungus from Wintergreen. J Nat Prod 60:1214–1215CrossRefGoogle Scholar
  44. Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96:1455–1464PubMedPubMedCentralCrossRefGoogle Scholar
  45. Frazier TP, Sun G, Burklew CE et al (2011) Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol 49:159–165CrossRefGoogle Scholar
  46. Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141:341–345PubMedPubMedCentralCrossRefGoogle Scholar
  47. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica ID 963401Google Scholar
  48. Glick BR, Todorovic B, Czarny J et al (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242CrossRefGoogle Scholar
  49. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gurulingappa P, Sword GA, Murdoch G et al (2010) Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control 55:34–41CrossRefGoogle Scholar
  51. Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hata K, Sone K (2008) Isolation of endophytes from leaves of Neolitsea sericea in broad leaf and conifer stands. Mycoscience 49:229–232CrossRefGoogle Scholar
  53. Hoffman MT, Gunatilaka MK, Wijeratne K et al (2013) Endohyphal bacterium enhances production of IAA by a foliar fungal endophyte. PLoS One 8(9):e73132PubMedPubMedCentralCrossRefGoogle Scholar
  54. Indananda C, Matsumoto A, Inahashi Y et al (2010) Actinophytocola oryzae gen. nov., sp. nov., isolated from the roots of Thai glutinous rice plants, a new member of the family Pseudonocardiaceae. Int J Syst Evol Microbiol 60:1141–1146PubMedCrossRefPubMedCentralGoogle Scholar
  55. Janso JE, Carter GT (2010) Biosynthetic potential of phylogenetically unique endophytic actinomycetes from tropical plants. Appl Environ Microbiol 76:4377–4386PubMedPubMedCentralCrossRefGoogle Scholar
  56. Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802CrossRefGoogle Scholar
  57. Johnson LJ, De Bonth ACM, Briggs LR et al (2013) The exploitation of Epichloae endophytes for agricultural benefit. Fungal Divers 60:171–188CrossRefGoogle Scholar
  58. Johnson JM, Alex T, Oelmuller R (2014) Piriformospora indica: the versatile and multifunctional root endophytic fungus for enhanced yield and tolerance to biotic and abiotic stress in crop plants. J Trop Agric 52:103–122Google Scholar
  59. Karthikeyan B, Joe MM, Islam MR et al (2012) ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56:77–86CrossRefGoogle Scholar
  60. Khan MS, Zaidi S, Ahamed M et al (2010) Plant growth promotion by phosphate solubilising fungi, Current perspective. Arch Agron Soil Sci 56:73–98CrossRefGoogle Scholar
  61. Khan AL, Hussain J, Al-Harrasi A et al (2013) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol:1–13Google Scholar
  62. Khan AL, Boshra AH, Ali E et al (2016) Indole 3 acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64. CrossRefGoogle Scholar
  63. Knoth JL, Kim SH, Ettl GJ et al (2014) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol 201:599–609PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kuklinsky-Sobral J, Araújo WL, Mendes R et al (2004) Isolation and characterization of soybean associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251PubMedCrossRefPubMedCentralGoogle Scholar
  65. Li JY, Strobel GA (2001) Jesterone and hydroxy-jesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry 57:261–265PubMedCrossRefPubMedCentralGoogle Scholar
  66. Li JY, Strobel G, Harper J et al (2000) Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Org Lett 2:767–770PubMedCrossRefPubMedCentralGoogle Scholar
  67. Li JY, Harper JK, Grant DM et al (2001) Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry 56:463–468PubMedCrossRefPubMedCentralGoogle Scholar
  68. Long H, Schmidt D, Baldwin I (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3:e2702PubMedPubMedCentralCrossRefGoogle Scholar
  69. Ma Y, Szostkiewicz I, Korte A et al (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068PubMedPubMedCentralGoogle Scholar
  70. Madore M, Webb JA (1981) Leaf free space analysis and vein loading in Cucurbita pepo. Can J Bot 59:2550–2557CrossRefGoogle Scholar
  71. Miller JD, MacKenzie S, Foto M et al (2002) Needles of white spruce inoculated with rugulosin-producing endophytes contain rugulosin reducing spruce bud-worm growth rate. Mycol Res 106:471–479CrossRefGoogle Scholar
  72. Miller SH, Browne P, Prignent-camberat C et al (2010) Biochemical and genomical comparison of inorganic phosphate solubilization in Pseudomonas species. Enviorn Microbiol Rep 2:403–411CrossRefGoogle Scholar
  73. Motsara MR, Bhattacharya PB, Sreevastava B (1995) Biofertilizers, their description and usage. A source book- cum- glossary, vol 204. Fertilizer Development and Consultation Organisation, New Delhi, pp 9–18Google Scholar
  74. Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. SciWorld J 2014:1–11Google Scholar
  75. Nudel C, Gonzalez R, Castaneda N et al (2001) Influence of iron on growth, production of siderophore compounds, membrane proteins, and lipase activity in Acinetobacter calcoaceticus BD 413. Microbiol Res 155:263–269PubMedCrossRefPubMedCentralGoogle Scholar
  76. Orole O, Adejumo T (2009) Activity of fungal endophytes against four maize wilt pathogens. Afr J Microbiol Res 3:969–973Google Scholar
  77. Orozco-Mosqueda MDC, Rocha-Granados MDC, Glick BR et al (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res 208:25–31CrossRefGoogle Scholar
  78. Ownley BH, Griffin MR, Klingeman WE et al (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98:267–270PubMedCrossRefPubMedCentralGoogle Scholar
  79. Pande A, Pandey P, Mehra S et al (2017) Phenotypic and genotypic characterisation of phosphate solubilising bacteria and their efficiency on the growth of maize. J Genet Eng Biotechnol 15:379–339PubMedPubMedCentralCrossRefGoogle Scholar
  80. Park JH, Choi GJ, Lee SW et al (2005) Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15:112–117Google Scholar
  81. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedCrossRefPubMedCentralGoogle Scholar
  82. Parsa S, Ortiz V, Vega FE (2013) Establishing fungal entomopathogens as endophytes: towards endophytic biological control. J Vis Exp (74):50360Google Scholar
  83. Parsa S, Ortiz V, Gómez-Jiménez MI et al (2016) Root environment is a key determinant of fungal entomopathogen endophytism following seed treatment in the common bean, Phaseolus vulgaris. Biol Control 116:74–81CrossRefGoogle Scholar
  84. Pavlo A, Leonid O, Iryna Z et al (2011) Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.). Biol Control 56:43–49CrossRefGoogle Scholar
  85. Pimentel D (2009) Pesticides and pest control. In: Peshi R, Dhawan AK (eds) Integrated pest management: innovation-development process. Springer, Amsterdam, pp 83–87CrossRefGoogle Scholar
  86. Pimentel IC, Glienke-Blanco C, Gabardo J et al (2006) Identification and colonization of endophytic fungi from soybean (Glycine max (L.) Merril) under different environmental conditions. Braz Arch Biol Technol 49:705–711CrossRefGoogle Scholar
  87. Pinheiro EA, Carvalho JM, Santos DC et al (2013) Chemical constituents of Aspergillus sp. EJC08 isolated as endophyte from Bauhinia guianensis and their antimicrobial activity. An Acad Bras Cienc 85:1247–1253PubMedCrossRefPubMedCentralGoogle Scholar
  88. Qayyum MA, Wakil W, Arif MJ et al (2015) Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants. Biol Control 90:200–207CrossRefGoogle Scholar
  89. Qin S, Li J, Zhang YQ et al (2009) Plantactinospora mayteni gen. nov., sp. nov., a member of the family Micromonosporaceae. Int J Syst Evol Microbiol 59:2527–2533PubMedCrossRefPubMedCentralGoogle Scholar
  90. Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424PubMedCrossRefPubMedCentralGoogle Scholar
  91. Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160PubMedCrossRefPubMedCentralGoogle Scholar
  92. Ravel C, Courty C, Coudret A et al (1997) Beneficial effects of Neotyphodium lolii on the growth and the water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress. Agronomie 17:173–181CrossRefGoogle Scholar
  93. Reinhold HB, Hurek T (2010) Interactions of gramineous plants with Azoarcus spp. and other Diazotrophs: identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17:29–54CrossRefGoogle Scholar
  94. Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114PubMedCrossRefPubMedCentralGoogle Scholar
  95. Rodriguez H, Fraga R, Gonzalez T et al (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21CrossRefGoogle Scholar
  96. Rosenblueth M, Martínez-Romero E (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol 181:337–344PubMedCrossRefPubMedCentralGoogle Scholar
  97. Rowan DD (1993) Lolitrems, peramine and paxilline: mycotoxins of the ryegrass endophyte interaction. Agric Ecosyst Environ 44:103–122CrossRefGoogle Scholar
  98. Russo ML, Pelizza SA, Cabello MN et al (2015) Endophytic colonisation of tobacco, corn, wheat and soybeans by the fungal entomopathogen Beauveria bassiana (Ascomycota, Hypocreales). Biocontrol Sci Tech 25:475–480CrossRefGoogle Scholar
  99. Rybakova D, Cernava T, Köberl M et al (2015) Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant Soil 405:125–140CrossRefGoogle Scholar
  100. Santoyo G, Monero G, Glick BR (2015) Plant growth promoting bacterial endophytes. Microbiol Res 183:92–95PubMedCrossRefPubMedCentralGoogle Scholar
  101. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340PubMedCrossRefPubMedCentralGoogle Scholar
  102. Seghers D, Wittebolle L, Top EM et al (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70:1475–1482PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sessitsch A, Coenye T, Sturz AV et al (2005) Burkholderia phytofirmins sp Nov, a novel plant-associated bacterium with plant beneficial properties. Int J Syst Evol Microbiol 55:1187–1192PubMedCrossRefPubMedCentralGoogle Scholar
  104. Shentu X, Zhan X, Ma Z et al (2014) Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic. Braz J Microbiol 45:248–254PubMedPubMedCentralCrossRefGoogle Scholar
  105. Siegel MR, Latch GC, Bush LP et al (1990) Fungal endophyte-infected grasses: alkaloid accumulation and aphid response. J Chem Ecol 16:3301–3315PubMedCrossRefPubMedCentralGoogle Scholar
  106. Silva GH, Teles HL, Zanardi LM et al (2006) Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry 67:1964–1969PubMedCrossRefPubMedCentralGoogle Scholar
  107. Silva GH, DeOliveira CM, Teles HL et al (2010) Sesquiterpenes from Xylaria sp., an endophytic fungus associated with Piper aduncum (Piperaceae). Phytochem Lett 3:164–167CrossRefGoogle Scholar
  108. Souza SA, Xavier AA, Costa MR et al (2013) Endophytic bacterial diversity in banana ‘Prata Anã’ (Musa spp.) roots. Genet Mol Biol 36:252–264PubMedPubMedCentralCrossRefGoogle Scholar
  109. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism -plant signaling. FEMS Microbiol Rev 31:425–448PubMedCrossRefPubMedCentralGoogle Scholar
  110. Specian V, Sarragiotto MH, Pamphile JA et al (2012) Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata. Braz J Microbial 43:1174–1182CrossRefGoogle Scholar
  111. Stepniewska Z, Kuzniar A (2013) Endophytic microorganisms-promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97:9589–9596PubMedPubMedCentralCrossRefGoogle Scholar
  112. Stierle AA, Stierle DB (2015) Bioactive secondary metabolites produced by the fungal endophytes of conifers. Nat Prod Commun 10:1671–1682PubMedPubMedCentralGoogle Scholar
  113. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502PubMedPubMedCentralCrossRefGoogle Scholar
  114. Strobel GA, Miller RV, Martinez-Miller C et al (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926PubMedCrossRefPubMedCentralGoogle Scholar
  115. Strobel G, Daisy B, Castillo U et al (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268PubMedCrossRefPubMedCentralGoogle Scholar
  116. Sun C, Johnson J, Cai D et al (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017PubMedCrossRefPubMedCentralGoogle Scholar
  117. Suryakala D, Maheshwaridevi PV, Lakshmi KV (2004) Chemical characterization and in vitro antibiosis of siderophores of rhizosphere fluorescent Pseudomonads. Indian J Microbiol 44:105–108Google Scholar
  118. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459PubMedCrossRefPubMedCentralGoogle Scholar
  119. Varughese T, Riosa N, Higginbotham S et al (2012) Antifungal depsidone metabolites from Cordyceps dipterigena, an endophytic fungus antagonistic to the phytopathogen Gibberella fujikuroi. Tetrahedron Lett 53:1624–1626PubMedPubMedCentralCrossRefGoogle Scholar
  120. Vega FE (2008) Insect pathology and fungal endophytes. J Invertebr Pathol 98:277–279PubMedCrossRefPubMedCentralGoogle Scholar
  121. Vega FE, Simpkins A, Aime MC et al (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawaii, Mexico and Puerto Rico. Fungal Ecol 3:122–138CrossRefGoogle Scholar
  122. Waller F, Achatz B, Baltruschat H et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wang M, Xing Y, Wang J et al (2014) The role of the chi1 gene from the endophytic bacteria Serratia proteamaculans 336x in the biological control of wheat take-all. Can J Microbiol 60:533–540PubMedCrossRefPubMedCentralGoogle Scholar
  124. Waqas M, Khan AL, Lee IJ (2013) Bioactive chemical constituents produced by endophytes and effects on rice plant growth. J Plant Interact 9(1):478–487. CrossRefGoogle Scholar
  125. Weerapreeyakul N, Anorach R, Khuansawad T et al (2007) Synthesis of bioreductive esters from fungal compounds. Chem Pharm Bull 55:930–935PubMedCrossRefPubMedCentralGoogle Scholar
  126. White JF Jr, Torres MS (2010) Is plant endophyte – mediated defensive mutualism the result of oxidative stress protection. Physiol Plant 138:440–446PubMedCrossRefPubMedCentralGoogle Scholar
  127. Wilkinson HH, Siegel MR, Blankenship JD et al (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass endophyte mutualism. Mol Plant-Microbe Interact 13:1027–1103PubMedCrossRefPubMedCentralGoogle Scholar
  128. Yadav A, Yadav K (2017) Exploring the potential of endophytes in agriculture: a minireview. Adv Plants Agric Res 6:1–5Google Scholar
  129. Yazdani M, Bahmanyar MA, Pirdashti H et al (2009) Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L). World Acad Sci Eng Technol 49:90–92Google Scholar
  130. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771PubMedCrossRefPubMedCentralGoogle Scholar
  131. Zhang X, Li C, Nan Z (2012) Effects of cadmium stress on seed germination and seedling growth of Elymus dahuricus infected with the Neotyphodium endophyte. Sci China Life Sci 55:793–799PubMedCrossRefPubMedCentralGoogle Scholar
  132. Zou WX, Meng JC, Lu H et al (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529–1530PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of BiosciencesMahatma Gandhi UniversityKottayamIndia

Personalised recommendations