Advertisement

Optimization Issues in the Problem of Small Satellite Attitude Determination and Control

  • Zaure RakishevaEmail author
  • Anna Sukhenko
  • Nazgul Kaliyeva
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 144)

Abstract

The problems of synthesis of attitude determination and control system of small satellites regarding the influence of external perturbations due to their small mass and restrictions in using high-precision actuators, due to the limitations of energy budget and construction, are considered. The solutions to this problem are proposed involving the development of high-accuracy algorithms for satellite attitude determination and control, using the minimum set of sensors, various types of actuators, and optimization principles.

Abbreviations

λ

Positive constant

\( \overrightarrow{\omega_{bi}^b} \)

Angular velocity of the small satellite in the body coordinate system

\( \overrightarrow{\omega_{oi}^o} \)

Angular velocity of the orbital coordinate system relative to the inertial coordinate system

Δω1, Δω2, Δω3

Components of the vector of deviation of the small satellite angular velocity w.r.t. the required angular velocity

\( \overrightarrow{\omega_{\mathrm{r}}} \)

Required angular velocity

Multiplication operator for quaternions

A

System matrix

B

Control matrix

\( \overrightarrow{B} \)

Geomagnetic induction vector

\( \overrightarrow{B^o}={\big[}{B}_x^o,{B}_y^o,{B}_z^o{\big]} \)

Geomagnetic induction vector in the orbital coordinate system

e(t)

Misalignment of the angular position of the small satellite

\( \overrightarrow{G_b} \)

Angular momentum of satellite

\( \overrightarrow{h} \)

Vector of conjugate variables

\( \overrightarrow{h_a^b} \)

Angular momentum of the reaction wheels

J

Inertia moments of the small satellite

\( {\tilde{J}}_x \), \( {\tilde{J}}_{\mathrm{y}} \), \( {\tilde{J}}_z \)

Nominal values of the inertia moments

ΔJx, ΔJy, ΔJz

Value of deviations of the satellite moment of inertia

Kp, Kd

Proportional gain and derivative gain

LMI

Linear matrix inequalities

\( \overrightarrow{M_e^b} \)

Moment of the external forces in the body coordinate system

\( \overrightarrow{M_c^b} \)

Control moment of the actuators in the body coordinate system

\( \overrightarrow{m} \)

Magnetic moment of the coils

N

Matrix of system noise

P

Initial covariance matrix

PD-controller

Proportional-derivative controller

\( \Delta \overrightarrow{\mathrm{Q}} \)

Difference between the current angular position and the required angular position

\( \overrightarrow{{\mathrm{Q}}_{bi}} \)

Quaternion that sets the current angular position of the satellite in the inertial coordinate system

\( {\overrightarrow{Q}}_{bo} \)

Quaternion that sets the current angular position of the satellite in the orbital coordinate system

\( \overrightarrow{{Q_{b\mathrm{o}}}^{\ast }} \)

Quaternion that is the inverse of \( {\overrightarrow{Q}}_{bo} \)

\( \overrightarrow{{\mathrm{Q}}_{\mathrm{r}}} \)

Desired angular position

Δq1, Δq2, Δq3

Components of the vector part of the quaternion which describe the deviation of the small satellite current orientation regarding the desired orientation

\( {R}_b^o \)

Direction cosine matrix representing the rotation of the orbital coordinate system axes regarding the axes of the body coordinate system

\( \overrightarrow{u} \)

Control vector

W ≥ 0, P > 0

Constant matrices

\( \overrightarrow{X} \)

State vector of the dynamical system

\( \overrightarrow{\Delta X} \)

Deviation of the current state vector of the dynamic system w.r.t. the desired state vector

δx, δy, δz

Normalized parametric uncertainties of the satellite inertia moments

References

  1. 1.
    Wertz, J.R.: Spacecraft Attitude Determination and Control. Kluwer, Dordrecht (1990)Google Scholar
  2. 2.
    Markley, F.L.: Attitude determination using two vector measurements. http://www.researchgate.net/publication/4706531
  3. 3.
    Shuster, M.D., Oh, S.D.: Three axis attitude determination from vector observations. J. Guid. Contr. Dyn. 4(1), 70–77 (1981)CrossRefGoogle Scholar
  4. 4.
    Marques, S.: Small Satellites Attitude Determination Methods. Thesis, Universidade tecnica de Lisboa (2000)Google Scholar
  5. 5.
    Wertz, J.R., Larson, W.J.: Space Mission Analysis and Design. Microcosm Inc., Torrance, CA (1992)CrossRefGoogle Scholar
  6. 6.
    Zhang, A., Wang, Y., Zhang, Z., Reza Karimi, H.: Robust control allocation for spacecraft attitude stabilization under actuator faults and uncertainty. Math. Probl. Eng. 2014, 789327 (2014).  https://doi.org/10.1155/2014/789327 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Balandin, D.V., Gorodetskiy, S.Y.: Klassicheskie i sovremennyie metodyi postroeniya regulyatorov v primerah. Elektronnoe uchebno-metodicheskoe posobie. Nizhniy Novgorod. Nizhegorodskiy gosuniversitet (2012)Google Scholar
  8. 8.
    Tisa, P., Vergez, P.: Performance analysis of control algorithms for FalconSat-3. http://www.learningace.com/doc/1823864/31/performance-analysis-of-contol-algorithms-for-falconsat-3-vergez
  9. 9.
    Parlos, A.G., Sunkel, J.W.: Adaptive attitude control and momentum management for large—angle spacecraft maneuvers. J. Guid. Control. Dyn. 15(4), 1018–1028 (1992)CrossRefGoogle Scholar
  10. 10.
    Xiao, B., Hu, Q., Ma, G.: Adaptive quaternion-based output feedback control for flexible spacecraft attitude tracking with input constraints. Proc. Inst. Mech, Eng. Part I J. Syst. Cont. Eng. 223(3), 226–240 (2011)Google Scholar
  11. 11.
    Crassidis, J.L., Markley, F.L.: Sliding mode control using modified Rodriguez parameters. J. Guid. Control. Dyn. 19(6), 1381–1383 (1996)CrossRefGoogle Scholar
  12. 12.
    Doyle, J.C., Glover, K., Khargonekar, P., Francis, B.: State apace solutions to standard H2 and H infinity control problems. IEEE Trans. Automat. Contr. 34(8), 831–847 (1989)CrossRefGoogle Scholar
  13. 13.
    Wisniewski, R.: Satellite attitude control using only electromagnetic actuation. Ph.D. thesis, Aalborg University, Denmark (1996)Google Scholar
  14. 14.
    Bushenkov, V.A., Ovchinnikov, M.Y., Smirnov, G.V.: Attitude stabilization of a satellite by magnetic coils. Acta Astronaut. 50(12), 721–728 (2002)CrossRefGoogle Scholar
  15. 15.
    Kupriyanova, N.V., Ovchinnikov, M.Y., Pen’kov, V.I., Selivanova, A.S.: Passive magnetic attitude control system of the first Russian nanosatellite TNS-0. KIAM Preprint 46 (2005)Google Scholar
  16. 16.
    Silani, E., Lovera, M.: Magnetic spacecraft attitude control: a survey and some new results. Control. Eng. Pract. 13(3), 357–371 (2005)CrossRefGoogle Scholar
  17. 17.
    Wisniewski, R., Blanke, M.: Fully magnetic attitude control for spacecraft subject to gravity gradient. Automatica. 35(7), 1201–1214 (1999)CrossRefGoogle Scholar
  18. 18.
    Lovera, M.: Optimal magnetic momentum control for inertially pointing spacecraft. Eur. J. Control. 7(1), 30–39 (2001)CrossRefGoogle Scholar
  19. 19.
    Gahinet, P., Apkarian, P.: A linear matrix inequality approach to H∞ control. Int. J. Robust Nonlinear Contr. 4, 421–448 (1994)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nemirovski, A., Gahinet, P.: The projective method for solving linear matrix inequalities. Proceedings of the American Control Conference. Baltimore, Maryland (1994)Google Scholar
  21. 21.
    Balandin, D.V., Kogan, М.М.: Primenenie lineinyh matrichnyh neravenstv v sinteze zakonov upravleniya: uchebno-metodicheskie materialy po spetsial’nomu kursu “Upravlenie kolebaniyami dinamicheskih sistem”. Nizhniy Novgorod (2010)Google Scholar
  22. 22.
    Denisenko, V.V.: PID-regulyatiry: printsipy postroeniya i modificatsii. Sovrem. Tehnologii avtomatizatsii. 1, 66–73 (2006)Google Scholar
  23. 23.
    Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zaure Rakisheva
    • 1
    Email author
  • Anna Sukhenko
    • 1
  • Nazgul Kaliyeva
    • 1
  1. 1.Department of MechanicsAl-Farabi Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations